2021-06-20 10:34:31 +00:00
|
|
|
from copy import deepcopy
|
|
|
|
from random import randint
|
|
|
|
|
|
|
|
try:
|
|
|
|
from urllib.parse import urlparse
|
|
|
|
except ImportError:
|
|
|
|
from urlparse import urlparse
|
|
|
|
|
2022-09-28 09:35:12 +00:00
|
|
|
from moto.moto_api._internal import mock_random
|
2021-06-20 10:34:31 +00:00
|
|
|
from tests.test_eks.test_eks_constants import (
|
|
|
|
ClusterAttributes,
|
|
|
|
ClusterInputs,
|
2021-08-19 05:44:56 +00:00
|
|
|
FargateProfileAttributes,
|
|
|
|
FargateProfileInputs,
|
2021-06-20 10:34:31 +00:00
|
|
|
NodegroupAttributes,
|
|
|
|
NodegroupInputs,
|
|
|
|
ResponseAttributes,
|
|
|
|
STATUS,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2022-09-28 09:35:12 +00:00
|
|
|
generate_random_name = mock_random.get_random_string
|
|
|
|
|
|
|
|
|
2021-06-20 10:34:31 +00:00
|
|
|
def attributes_to_test(inputs, name):
|
|
|
|
"""
|
|
|
|
Assembles the list of tuples which will be used to validate test results.
|
|
|
|
"""
|
|
|
|
result = deepcopy(inputs.REQUIRED + inputs.OPTIONAL + [STATUS])
|
|
|
|
if isinstance(inputs, ClusterInputs):
|
|
|
|
result += [(ClusterAttributes.NAME, name)]
|
|
|
|
elif isinstance(inputs, NodegroupInputs):
|
|
|
|
result += [(NodegroupAttributes.NODEGROUP_NAME, name)]
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def generate_clusters(client, num_clusters, minimal):
|
|
|
|
"""
|
|
|
|
Generates 'num_clusters' number of clusters with randomized data and adds them to the mocked backend.
|
|
|
|
If 'minimal' is True, only the required values are generated; if False all values are generated.
|
|
|
|
Returns a list of the names of the generated clusters.
|
|
|
|
"""
|
|
|
|
return [
|
|
|
|
client.create_cluster(
|
|
|
|
name=generate_random_name(), **_input_builder(ClusterInputs, minimal)
|
|
|
|
)[ResponseAttributes.CLUSTER][ClusterAttributes.NAME]
|
|
|
|
for _ in range(num_clusters)
|
|
|
|
]
|
|
|
|
|
|
|
|
|
2021-08-19 05:44:56 +00:00
|
|
|
def generate_fargate_profiles(client, cluster_name, num_profiles, minimal):
|
|
|
|
"""
|
|
|
|
Generates 'num_profiles' number of fargate profiles with randomized data and adds them to
|
|
|
|
the mocked backend.
|
|
|
|
If 'minimal' is True, only the required values are generated; if False, all values are generated.
|
|
|
|
Returns a list of the names of the generated Fargate profiles.
|
|
|
|
"""
|
|
|
|
return [
|
|
|
|
client.create_fargate_profile(
|
|
|
|
fargateProfileName=generate_random_name(),
|
|
|
|
clusterName=cluster_name,
|
|
|
|
**_input_builder(FargateProfileInputs, minimal)
|
|
|
|
)[ResponseAttributes.FARGATE_PROFILE][
|
|
|
|
FargateProfileAttributes.FARGATE_PROFILE_NAME
|
|
|
|
]
|
|
|
|
for _ in range(num_profiles)
|
|
|
|
]
|
|
|
|
|
|
|
|
|
2021-06-20 10:34:31 +00:00
|
|
|
def generate_nodegroups(client, cluster_name, num_nodegroups, minimal):
|
|
|
|
"""
|
|
|
|
Generates 'num_nodegroups' number of nodegroups with randomized data and adds them to the mocked backend.
|
|
|
|
If 'minimal' is True, only the required values are generated; if False, all values are generated.
|
|
|
|
Returns a list of the names of the generated nodegroups.
|
|
|
|
"""
|
|
|
|
return [
|
|
|
|
client.create_nodegroup(
|
|
|
|
nodegroupName=generate_random_name(),
|
|
|
|
clusterName=cluster_name,
|
|
|
|
**_input_builder(NodegroupInputs, minimal)
|
|
|
|
)[ResponseAttributes.NODEGROUP][NodegroupAttributes.NODEGROUP_NAME]
|
|
|
|
for _ in range(num_nodegroups)
|
|
|
|
]
|
|
|
|
|
|
|
|
|
2021-08-19 05:44:56 +00:00
|
|
|
def generate_dict(prefix, count):
|
|
|
|
return {
|
|
|
|
"{prefix}_{count}".format(prefix=prefix, count=_count): str(_count)
|
|
|
|
for _count in range(count)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2021-06-20 10:34:31 +00:00
|
|
|
def is_valid_uri(value):
|
|
|
|
"""
|
|
|
|
Returns true if a provided string has the form of a valid uri.
|
|
|
|
"""
|
|
|
|
result = urlparse(value)
|
|
|
|
return all([result.scheme, result.netloc, result.path])
|
|
|
|
|
|
|
|
|
|
|
|
def region_matches_partition(region, partition):
|
|
|
|
"""
|
|
|
|
Returns True if the provided region and partition are a valid pair.
|
|
|
|
"""
|
|
|
|
valid_matches = [
|
|
|
|
("cn-", "aws-cn"),
|
|
|
|
("us-gov-", "aws-us-gov"),
|
|
|
|
("us-gov-iso-", "aws-iso"),
|
|
|
|
("us-gov-iso-b-", "aws-iso-b"),
|
|
|
|
]
|
|
|
|
|
|
|
|
for prefix, expected_partition in valid_matches:
|
|
|
|
if region.startswith(prefix):
|
|
|
|
return partition == expected_partition
|
|
|
|
return partition == "aws"
|
|
|
|
|
|
|
|
|
|
|
|
def _input_builder(options, minimal):
|
|
|
|
"""
|
|
|
|
Assembles the inputs which will be used to generate test object into a dictionary.
|
|
|
|
"""
|
|
|
|
values = deepcopy(options.REQUIRED)
|
|
|
|
if not minimal:
|
|
|
|
values.extend(deepcopy(options.OPTIONAL))
|
|
|
|
return dict(values)
|
|
|
|
|
|
|
|
|
|
|
|
def random_names(name_list):
|
|
|
|
"""
|
|
|
|
Returns one value picked at random a list, and one value guaranteed not to be on the list.
|
|
|
|
"""
|
|
|
|
name_on_list = name_list[randint(0, len(name_list) - 1)]
|
|
|
|
|
|
|
|
name_not_on_list = generate_random_name()
|
|
|
|
while name_not_on_list in name_list:
|
|
|
|
name_not_on_list = generate_random_name()
|
|
|
|
|
|
|
|
return name_on_list, name_not_on_list
|