moto/tests/test_eks/test_eks_utils.py

136 lines
4.2 KiB
Python
Raw Normal View History

from copy import deepcopy
from random import randint
try:
from urllib.parse import urlparse
except ImportError:
from urlparse import urlparse
from moto.moto_api._internal import mock_random
from tests.test_eks.test_eks_constants import (
STATUS,
ClusterAttributes,
ClusterInputs,
2021-08-19 05:44:56 +00:00
FargateProfileAttributes,
FargateProfileInputs,
NodegroupAttributes,
NodegroupInputs,
ResponseAttributes,
)
generate_random_name = mock_random.get_random_string
def attributes_to_test(inputs, name):
"""
Assembles the list of tuples which will be used to validate test results.
"""
result = deepcopy(inputs.REQUIRED + inputs.OPTIONAL + [STATUS])
if isinstance(inputs, ClusterInputs):
result += [(ClusterAttributes.NAME, name)]
elif isinstance(inputs, NodegroupInputs):
result += [(NodegroupAttributes.NODEGROUP_NAME, name)]
return result
def generate_clusters(client, num_clusters, minimal):
"""
Generates 'num_clusters' number of clusters with randomized data and adds them to the mocked backend.
If 'minimal' is True, only the required values are generated; if False all values are generated.
Returns a list of the names of the generated clusters.
"""
return [
client.create_cluster(
name=generate_random_name(), **_input_builder(ClusterInputs, minimal)
)[ResponseAttributes.CLUSTER][ClusterAttributes.NAME]
for _ in range(num_clusters)
]
2021-08-19 05:44:56 +00:00
def generate_fargate_profiles(client, cluster_name, num_profiles, minimal):
"""
Generates 'num_profiles' number of fargate profiles with randomized data and adds them to
the mocked backend.
If 'minimal' is True, only the required values are generated; if False, all values are generated.
Returns a list of the names of the generated Fargate profiles.
"""
return [
client.create_fargate_profile(
fargateProfileName=generate_random_name(),
clusterName=cluster_name,
**_input_builder(FargateProfileInputs, minimal),
2021-08-19 05:44:56 +00:00
)[ResponseAttributes.FARGATE_PROFILE][
FargateProfileAttributes.FARGATE_PROFILE_NAME
]
for _ in range(num_profiles)
]
def generate_nodegroups(client, cluster_name, num_nodegroups, minimal):
"""
Generates 'num_nodegroups' number of nodegroups with randomized data and adds them to the mocked backend.
If 'minimal' is True, only the required values are generated; if False, all values are generated.
Returns a list of the names of the generated nodegroups.
"""
return [
client.create_nodegroup(
nodegroupName=generate_random_name(),
clusterName=cluster_name,
**_input_builder(NodegroupInputs, minimal),
)[ResponseAttributes.NODEGROUP][NodegroupAttributes.NODEGROUP_NAME]
for _ in range(num_nodegroups)
]
2021-08-19 05:44:56 +00:00
def generate_dict(prefix, count):
return {f"{prefix}_{_count}": str(_count) for _count in range(count)}
2021-08-19 05:44:56 +00:00
def is_valid_uri(value):
"""
Returns true if a provided string has the form of a valid uri.
"""
result = urlparse(value)
return all([result.scheme, result.netloc, result.path])
def region_matches_partition(region, partition):
"""
Returns True if the provided region and partition are a valid pair.
"""
valid_matches = [
("cn-", "aws-cn"),
("us-gov-", "aws-us-gov"),
("us-gov-iso-", "aws-iso"),
("us-gov-iso-b-", "aws-iso-b"),
]
for prefix, expected_partition in valid_matches:
if region.startswith(prefix):
return partition == expected_partition
return partition == "aws"
def _input_builder(options, minimal):
"""
Assembles the inputs which will be used to generate test object into a dictionary.
"""
values = deepcopy(options.REQUIRED)
if not minimal:
values.extend(deepcopy(options.OPTIONAL))
return dict(values)
def random_names(name_list):
"""
Returns one value picked at random a list, and one value guaranteed not to be on the list.
"""
name_on_list = name_list[randint(0, len(name_list) - 1)]
name_not_on_list = generate_random_name()
while name_not_on_list in name_list:
name_not_on_list = generate_random_name()
return name_on_list, name_not_on_list