moto/tests/test_sagemaker/test_sagemaker_processing.py

408 lines
14 KiB
Python
Raw Normal View History

import datetime
import re
import boto3
import pytest
from botocore.exceptions import ClientError
2024-01-07 12:03:33 +00:00
from moto import mock_aws
2022-08-13 09:49:43 +00:00
from moto.core import DEFAULT_ACCOUNT_ID as ACCOUNT_ID
FAKE_ROLE_ARN = f"arn:aws:iam::{ACCOUNT_ID}:role/FakeRole"
FAKE_PROCESSING_JOB_NAME = "MyProcessingJob"
FAKE_CONTAINER = "382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:1"
TEST_REGION_NAME = "us-east-1"
@pytest.fixture(name="sagemaker_client")
def fixture_sagemaker_client():
2024-01-07 12:03:33 +00:00
with mock_aws():
yield boto3.client("sagemaker", region_name=TEST_REGION_NAME)
class MyProcessingJobModel:
def __init__(
self,
processing_job_name,
role_arn,
container=None,
bucket=None,
prefix=None,
app_specification=None,
network_config=None,
processing_inputs=None,
processing_output_config=None,
processing_resources=None,
stopping_condition=None,
):
self.processing_job_name = processing_job_name
self.role_arn = role_arn
self.container = (
container
or "683313688378.dkr.ecr.us-east-1.amazonaws.com/sagemaker-scikit-learn:0.23-1-cpu-py3"
)
self.bucket = bucket or "my-bucket"
self.prefix = prefix or "sagemaker"
self.app_specification = app_specification or {
"ImageUri": self.container,
2022-03-10 14:39:59 +00:00
"ContainerEntrypoint": ["python3"],
}
self.network_config = network_config or {
"EnableInterContainerTrafficEncryption": False,
"EnableNetworkIsolation": False,
}
self.processing_inputs = processing_inputs or [
{
"InputName": "input",
"AppManaged": False,
"S3Input": {
"S3Uri": f"s3://{self.bucket}/{self.prefix}/processing/",
"LocalPath": "/opt/ml/processing/input",
"S3DataType": "S3Prefix",
"S3InputMode": "File",
"S3DataDistributionType": "FullyReplicated",
"S3CompressionType": "None",
},
}
]
self.processing_output_config = processing_output_config or {
"Outputs": [
{
"OutputName": "output",
"S3Output": {
"S3Uri": f"s3://{self.bucket}/{self.prefix}/processing/",
"LocalPath": "/opt/ml/processing/output",
"S3UploadMode": "EndOfJob",
},
"AppManaged": False,
}
]
}
self.processing_resources = processing_resources or {
"ClusterConfig": {
"InstanceCount": 1,
"InstanceType": "ml.m5.large",
"VolumeSizeInGB": 10,
},
}
self.stopping_condition = stopping_condition or {
"MaxRuntimeInSeconds": 3600,
}
def save(self, sagemaker_client):
params = {
"AppSpecification": self.app_specification,
"NetworkConfig": self.network_config,
"ProcessingInputs": self.processing_inputs,
"ProcessingJobName": self.processing_job_name,
"ProcessingOutputConfig": self.processing_output_config,
"ProcessingResources": self.processing_resources,
"RoleArn": self.role_arn,
"StoppingCondition": self.stopping_condition,
}
return sagemaker_client.create_processing_job(**params)
def test_create_processing_job(sagemaker_client):
bucket = "my-bucket"
prefix = "my-prefix"
app_specification = {
"ImageUri": FAKE_CONTAINER,
"ContainerEntrypoint": ["python3", "app.py"],
}
processing_resources = {
"ClusterConfig": {
"InstanceCount": 2,
"InstanceType": "ml.m5.xlarge",
"VolumeSizeInGB": 20,
},
}
stopping_condition = {"MaxRuntimeInSeconds": 60 * 60}
job = MyProcessingJobModel(
processing_job_name=FAKE_PROCESSING_JOB_NAME,
role_arn=FAKE_ROLE_ARN,
container=FAKE_CONTAINER,
bucket=bucket,
prefix=prefix,
app_specification=app_specification,
processing_resources=processing_resources,
stopping_condition=stopping_condition,
)
resp = job.save(sagemaker_client)
assert re.match(
rf"^arn:aws:sagemaker:.*:.*:processing-job/{FAKE_PROCESSING_JOB_NAME}$",
resp["ProcessingJobArn"],
)
resp = sagemaker_client.describe_processing_job(
ProcessingJobName=FAKE_PROCESSING_JOB_NAME
)
assert resp["ProcessingJobName"] == FAKE_PROCESSING_JOB_NAME
assert re.match(
rf"^arn:aws:sagemaker:.*:.*:processing-job/{FAKE_PROCESSING_JOB_NAME}$",
resp["ProcessingJobArn"],
)
assert "python3" in resp["AppSpecification"]["ContainerEntrypoint"]
assert "app.py" in resp["AppSpecification"]["ContainerEntrypoint"]
assert resp["RoleArn"] == FAKE_ROLE_ARN
assert resp["ProcessingJobStatus"] == "Completed"
assert isinstance(resp["CreationTime"], datetime.datetime)
assert isinstance(resp["LastModifiedTime"], datetime.datetime)
def test_list_processing_jobs(sagemaker_client):
test_processing_job = MyProcessingJobModel(
processing_job_name=FAKE_PROCESSING_JOB_NAME, role_arn=FAKE_ROLE_ARN
)
test_processing_job.save(sagemaker_client)
processing_jobs = sagemaker_client.list_processing_jobs()
assert len(processing_jobs["ProcessingJobSummaries"]) == 1
assert (
processing_jobs["ProcessingJobSummaries"][0]["ProcessingJobName"]
== FAKE_PROCESSING_JOB_NAME
)
assert re.match(
rf"^arn:aws:sagemaker:.*:.*:processing-job/{FAKE_PROCESSING_JOB_NAME}$",
processing_jobs["ProcessingJobSummaries"][0]["ProcessingJobArn"],
)
assert processing_jobs.get("NextToken") is None
def test_list_processing_jobs_multiple(sagemaker_client):
name_job_1 = "blah"
arn_job_1 = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar"
test_processing_job_1 = MyProcessingJobModel(
processing_job_name=name_job_1, role_arn=arn_job_1
)
test_processing_job_1.save(sagemaker_client)
name_job_2 = "blah2"
arn_job_2 = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar2"
test_processing_job_2 = MyProcessingJobModel(
processing_job_name=name_job_2, role_arn=arn_job_2
)
test_processing_job_2.save(sagemaker_client)
processing_jobs_limit = sagemaker_client.list_processing_jobs(MaxResults=1)
assert len(processing_jobs_limit["ProcessingJobSummaries"]) == 1
processing_jobs = sagemaker_client.list_processing_jobs()
assert len(processing_jobs["ProcessingJobSummaries"]) == 2
assert processing_jobs.get("NextToken") is None
def test_list_processing_jobs_none(sagemaker_client):
processing_jobs = sagemaker_client.list_processing_jobs()
assert len(processing_jobs["ProcessingJobSummaries"]) == 0
def test_list_processing_jobs_should_validate_input(sagemaker_client):
junk_status_equals = "blah"
with pytest.raises(ClientError) as ex:
sagemaker_client.list_processing_jobs(StatusEquals=junk_status_equals)
expected_error = (
f"1 validation errors detected: Value '{junk_status_equals}' at "
"'statusEquals' failed to satisfy constraint: Member must satisfy "
"enum value set: ['Completed', 'Stopped', 'InProgress', 'Stopping', "
"'Failed']"
)
assert ex.value.response["Error"]["Code"] == "ValidationException"
assert ex.value.response["Error"]["Message"] == expected_error
junk_next_token = "asdf"
with pytest.raises(ClientError) as ex:
sagemaker_client.list_processing_jobs(NextToken=junk_next_token)
assert ex.value.response["Error"]["Code"] == "ValidationException"
assert (
ex.value.response["Error"]["Message"]
== 'Invalid pagination token because "{0}".'
)
def test_list_processing_jobs_with_name_filters(sagemaker_client):
for i in range(5):
name = f"xgboost-{i}"
arn = f"arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar-{i}"
MyProcessingJobModel(processing_job_name=name, role_arn=arn).save(
sagemaker_client
)
for i in range(5):
name = f"vgg-{i}"
arn = f"arn:aws:sagemaker:us-east-1:000000000000:x-x/barfoo-{i}"
MyProcessingJobModel(processing_job_name=name, role_arn=arn).save(
sagemaker_client
)
xgboost_processing_jobs = sagemaker_client.list_processing_jobs(
NameContains="xgboost"
)
assert len(xgboost_processing_jobs["ProcessingJobSummaries"]) == 5
processing_jobs_with_2 = sagemaker_client.list_processing_jobs(NameContains="2")
assert len(processing_jobs_with_2["ProcessingJobSummaries"]) == 2
def test_list_processing_jobs_paginated(sagemaker_client):
for i in range(5):
name = f"xgboost-{i}"
arn = f"arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar-{i}"
MyProcessingJobModel(processing_job_name=name, role_arn=arn).save(
sagemaker_client
)
xgboost_processing_job_1 = sagemaker_client.list_processing_jobs(
NameContains="xgboost", MaxResults=1
)
assert len(xgboost_processing_job_1["ProcessingJobSummaries"]) == 1
assert (
xgboost_processing_job_1["ProcessingJobSummaries"][0]["ProcessingJobName"]
== "xgboost-0"
)
assert xgboost_processing_job_1.get("NextToken") is not None
xgboost_processing_job_next = sagemaker_client.list_processing_jobs(
NameContains="xgboost",
MaxResults=1,
NextToken=xgboost_processing_job_1.get("NextToken"),
)
assert len(xgboost_processing_job_next["ProcessingJobSummaries"]) == 1
assert (
xgboost_processing_job_next["ProcessingJobSummaries"][0]["ProcessingJobName"]
== "xgboost-1"
)
assert xgboost_processing_job_next.get("NextToken") is not None
def test_list_processing_jobs_paginated_with_target_in_middle(sagemaker_client):
for i in range(5):
name = f"xgboost-{i}"
arn = f"arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar-{i}"
MyProcessingJobModel(processing_job_name=name, role_arn=arn).save(
sagemaker_client
)
for i in range(5):
name = f"vgg-{i}"
arn = f"arn:aws:sagemaker:us-east-1:000000000000:x-x/barfoo-{i}"
MyProcessingJobModel(processing_job_name=name, role_arn=arn).save(
sagemaker_client
)
vgg_processing_job_1 = sagemaker_client.list_processing_jobs(
NameContains="vgg", MaxResults=1
)
assert len(vgg_processing_job_1["ProcessingJobSummaries"]) == 0
assert vgg_processing_job_1.get("NextToken") is not None
vgg_processing_job_6 = sagemaker_client.list_processing_jobs(
NameContains="vgg", MaxResults=6
)
assert len(vgg_processing_job_6["ProcessingJobSummaries"]) == 1
assert (
vgg_processing_job_6["ProcessingJobSummaries"][0]["ProcessingJobName"]
== "vgg-0"
)
assert vgg_processing_job_6.get("NextToken") is not None
vgg_processing_job_10 = sagemaker_client.list_processing_jobs(
NameContains="vgg", MaxResults=10
)
assert len(vgg_processing_job_10["ProcessingJobSummaries"]) == 5
assert (
vgg_processing_job_10["ProcessingJobSummaries"][-1]["ProcessingJobName"]
== "vgg-4"
)
assert vgg_processing_job_10.get("NextToken") is None
def test_list_processing_jobs_paginated_with_fragmented_targets(sagemaker_client):
for i in range(5):
name = f"xgboost-{i}"
arn = f"arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar-{i}"
MyProcessingJobModel(processing_job_name=name, role_arn=arn).save(
sagemaker_client
)
for i in range(5):
name = f"vgg-{i}"
arn = f"arn:aws:sagemaker:us-east-1:000000000000:x-x/barfoo-{i}"
MyProcessingJobModel(processing_job_name=name, role_arn=arn).save(
sagemaker_client
)
processing_jobs_with_2 = sagemaker_client.list_processing_jobs(
NameContains="2", MaxResults=8
)
assert len(processing_jobs_with_2["ProcessingJobSummaries"]) == 2
assert processing_jobs_with_2.get("NextToken") is not None
processing_jobs_with_2_next = sagemaker_client.list_processing_jobs(
NameContains="2",
MaxResults=1,
NextToken=processing_jobs_with_2.get("NextToken"),
)
assert len(processing_jobs_with_2_next["ProcessingJobSummaries"]) == 0
assert processing_jobs_with_2_next.get("NextToken") is not None
processing_jobs_with_2_next_next = sagemaker_client.list_processing_jobs(
NameContains="2",
MaxResults=1,
NextToken=processing_jobs_with_2_next.get("NextToken"),
)
assert len(processing_jobs_with_2_next_next["ProcessingJobSummaries"]) == 0
assert processing_jobs_with_2_next_next.get("NextToken") is None
def test_add_and_delete_tags_in_training_job(sagemaker_client):
processing_job_name = "MyProcessingJob"
role_arn = f"arn:aws:iam::{ACCOUNT_ID}:role/FakeRole"
container = "382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:1"
bucket = "my-bucket"
prefix = "my-prefix"
app_specification = {
"ImageUri": container,
"ContainerEntrypoint": ["python3", "app.py"],
}
processing_resources = {
"ClusterConfig": {
"InstanceCount": 2,
"InstanceType": "ml.m5.xlarge",
"VolumeSizeInGB": 20,
},
}
stopping_condition = {"MaxRuntimeInSeconds": 60 * 60}
job = MyProcessingJobModel(
processing_job_name,
role_arn,
container=container,
bucket=bucket,
prefix=prefix,
app_specification=app_specification,
processing_resources=processing_resources,
stopping_condition=stopping_condition,
)
resp = job.save(sagemaker_client)
resource_arn = resp["ProcessingJobArn"]
tags = [
{"Key": "myKey", "Value": "myValue"},
]
response = sagemaker_client.add_tags(ResourceArn=resource_arn, Tags=tags)
assert response["ResponseMetadata"]["HTTPStatusCode"] == 200
response = sagemaker_client.list_tags(ResourceArn=resource_arn)
assert response["Tags"] == tags
tag_keys = [tag["Key"] for tag in tags]
response = sagemaker_client.delete_tags(ResourceArn=resource_arn, TagKeys=tag_keys)
assert response["ResponseMetadata"]["HTTPStatusCode"] == 200
response = sagemaker_client.list_tags(ResourceArn=resource_arn)
assert response["Tags"] == []