moto/moto/rekognition/responses.py

73 lines
2.2 KiB
Python
Raw Normal View History

2022-03-29 14:15:25 +01:00
import json
2023-04-17 18:01:08 +00:00
from moto.core.common_types import TYPE_RESPONSE
2022-03-29 14:15:25 +01:00
from moto.core.responses import BaseResponse
2023-04-17 18:01:08 +00:00
from .models import rekognition_backends, RekognitionBackend
2022-03-29 14:15:25 +01:00
class RekognitionResponse(BaseResponse):
"""Handler for Rekognition requests and responses."""
2023-04-17 18:01:08 +00:00
def __init__(self) -> None:
2022-08-13 09:49:43 +00:00
super().__init__(service_name="rekognition")
2022-03-29 14:15:25 +01:00
@property
2023-04-17 18:01:08 +00:00
def rekognition_backend(self) -> RekognitionBackend:
2022-08-13 09:49:43 +00:00
return rekognition_backends[self.current_account][self.region]
2022-03-29 14:15:25 +01:00
2023-04-17 18:01:08 +00:00
def get_face_search(self) -> str:
(
job_status,
status_message,
video_metadata,
persons,
next_token,
text_model_version,
) = self.rekognition_backend.get_face_search()
return json.dumps(
dict(
JobStatus=job_status,
StatusMessage=status_message,
VideoMetadata=video_metadata,
Persons=persons,
NextToken=next_token,
TextModelVersion=text_model_version,
)
)
2023-04-17 18:01:08 +00:00
def get_text_detection(self) -> str:
2022-03-29 14:15:25 +01:00
(
job_status,
status_message,
video_metadata,
text_detections,
next_token,
text_model_version,
) = self.rekognition_backend.get_text_detection()
return json.dumps(
dict(
JobStatus=job_status,
StatusMessage=status_message,
VideoMetadata=video_metadata,
TextDetections=text_detections,
NextToken=next_token,
TextModelVersion=text_model_version,
)
)
2023-04-17 18:01:08 +00:00
def start_face_search(self) -> TYPE_RESPONSE:
headers = {"Content-Type": "application/x-amz-json-1.1"}
job_id = self.rekognition_backend.start_face_search()
response = ('{"JobId":"' + job_id + '"}').encode()
return 200, headers, response
2023-04-17 18:01:08 +00:00
def start_text_detection(self) -> TYPE_RESPONSE:
2022-03-29 14:15:25 +01:00
headers = {"Content-Type": "application/x-amz-json-1.1"}
job_id = self.rekognition_backend.start_text_detection()
response = ('{"JobId":"' + job_id + '"}').encode()
return 200, headers, response