moto/tests/test_sagemaker/test_sagemaker_training.py

400 lines
16 KiB
Python
Raw Normal View History

import boto3
from botocore.exceptions import ClientError
import datetime
2021-10-18 19:44:29 +00:00
import sure # noqa # pylint: disable=unused-import
import pytest
from moto import mock_sagemaker
from moto.sts.models import ACCOUNT_ID
FAKE_ROLE_ARN = "arn:aws:iam::{}:role/FakeRole".format(ACCOUNT_ID)
TEST_REGION_NAME = "us-east-1"
class MyTrainingJobModel(object):
def __init__(
self,
training_job_name,
role_arn,
container=None,
bucket=None,
prefix=None,
algorithm_specification=None,
resource_config=None,
input_data_config=None,
output_data_config=None,
hyper_parameters=None,
stopping_condition=None,
):
self.training_job_name = training_job_name
self.role_arn = role_arn
self.container = (
container or "382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:1"
)
self.bucket = bucket or "my-bucket"
self.prefix = prefix or "sagemaker/DEMO-breast-cancer-prediction/"
self.algorithm_specification = algorithm_specification or {
"TrainingImage": self.container,
"TrainingInputMode": "File",
}
self.resource_config = resource_config or {
"InstanceCount": 1,
"InstanceType": "ml.c4.2xlarge",
"VolumeSizeInGB": 10,
}
self.input_data_config = input_data_config or [
{
"ChannelName": "train",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": "s3://{}/{}/train/".format(self.bucket, self.prefix),
"S3DataDistributionType": "ShardedByS3Key",
}
},
"CompressionType": "None",
"RecordWrapperType": "None",
},
{
"ChannelName": "validation",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": "s3://{}/{}/validation/".format(
self.bucket, self.prefix
),
"S3DataDistributionType": "FullyReplicated",
}
},
"CompressionType": "None",
"RecordWrapperType": "None",
},
]
self.output_data_config = output_data_config or {
"S3OutputPath": "s3://{}/{}/".format(self.bucket, self.prefix)
}
self.hyper_parameters = hyper_parameters or {
"feature_dim": "30",
"mini_batch_size": "100",
"predictor_type": "regressor",
"epochs": "10",
"num_models": "32",
"loss": "absolute_loss",
}
self.stopping_condition = stopping_condition or {"MaxRuntimeInSeconds": 60 * 60}
def save(self):
sagemaker = boto3.client("sagemaker", region_name=TEST_REGION_NAME)
params = {
"RoleArn": self.role_arn,
"TrainingJobName": self.training_job_name,
"AlgorithmSpecification": self.algorithm_specification,
"ResourceConfig": self.resource_config,
"InputDataConfig": self.input_data_config,
"OutputDataConfig": self.output_data_config,
"HyperParameters": self.hyper_parameters,
"StoppingCondition": self.stopping_condition,
}
return sagemaker.create_training_job(**params)
@mock_sagemaker
def test_create_training_job():
sagemaker = boto3.client("sagemaker", region_name=TEST_REGION_NAME)
training_job_name = "MyTrainingJob"
role_arn = "arn:aws:iam::{}:role/FakeRole".format(ACCOUNT_ID)
container = "382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:1"
bucket = "my-bucket"
prefix = "sagemaker/DEMO-breast-cancer-prediction/"
algorithm_specification = {
"TrainingImage": container,
"TrainingInputMode": "File",
}
resource_config = {
"InstanceCount": 1,
"InstanceType": "ml.c4.2xlarge",
"VolumeSizeInGB": 10,
}
input_data_config = [
{
"ChannelName": "train",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": "s3://{}/{}/train/".format(bucket, prefix),
"S3DataDistributionType": "ShardedByS3Key",
}
},
"CompressionType": "None",
"RecordWrapperType": "None",
},
{
"ChannelName": "validation",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": "s3://{}/{}/validation/".format(bucket, prefix),
"S3DataDistributionType": "FullyReplicated",
}
},
"CompressionType": "None",
"RecordWrapperType": "None",
},
]
output_data_config = {"S3OutputPath": "s3://{}/{}/".format(bucket, prefix)}
hyper_parameters = {
"feature_dim": "30",
"mini_batch_size": "100",
"predictor_type": "regressor",
"epochs": "10",
"num_models": "32",
"loss": "absolute_loss",
}
stopping_condition = {"MaxRuntimeInSeconds": 60 * 60}
job = MyTrainingJobModel(
training_job_name,
role_arn,
container=container,
bucket=bucket,
prefix=prefix,
algorithm_specification=algorithm_specification,
resource_config=resource_config,
input_data_config=input_data_config,
output_data_config=output_data_config,
hyper_parameters=hyper_parameters,
stopping_condition=stopping_condition,
)
resp = job.save()
resp["TrainingJobArn"].should.match(
r"^arn:aws:sagemaker:.*:.*:training-job/{}$".format(training_job_name)
)
resp = sagemaker.describe_training_job(TrainingJobName=training_job_name)
resp["TrainingJobName"].should.equal(training_job_name)
resp["TrainingJobArn"].should.match(
r"^arn:aws:sagemaker:.*:.*:training-job/{}$".format(training_job_name)
)
assert resp["ModelArtifacts"]["S3ModelArtifacts"].startswith(
output_data_config["S3OutputPath"]
2020-10-06 06:46:05 +00:00
)
assert training_job_name in (resp["ModelArtifacts"]["S3ModelArtifacts"])
2020-10-06 06:46:05 +00:00
assert resp["ModelArtifacts"]["S3ModelArtifacts"].endswith("output/model.tar.gz")
assert resp["TrainingJobStatus"] == "Completed"
assert resp["SecondaryStatus"] == "Completed"
assert resp["HyperParameters"] == hyper_parameters
2020-10-06 06:46:05 +00:00
assert (
resp["AlgorithmSpecification"]["TrainingImage"]
== algorithm_specification["TrainingImage"]
2020-10-06 06:46:05 +00:00
)
assert (
resp["AlgorithmSpecification"]["TrainingInputMode"]
== algorithm_specification["TrainingInputMode"]
2020-10-06 06:46:05 +00:00
)
assert "MetricDefinitions" in resp["AlgorithmSpecification"]
assert "Name" in resp["AlgorithmSpecification"]["MetricDefinitions"][0]
assert "Regex" in resp["AlgorithmSpecification"]["MetricDefinitions"][0]
assert resp["RoleArn"] == role_arn
assert resp["InputDataConfig"] == input_data_config
assert resp["OutputDataConfig"] == output_data_config
assert resp["ResourceConfig"] == resource_config
assert resp["StoppingCondition"] == stopping_condition
assert isinstance(resp["CreationTime"], datetime.datetime)
assert isinstance(resp["TrainingStartTime"], datetime.datetime)
assert isinstance(resp["TrainingEndTime"], datetime.datetime)
assert isinstance(resp["LastModifiedTime"], datetime.datetime)
assert "SecondaryStatusTransitions" in resp
assert "Status" in resp["SecondaryStatusTransitions"][0]
assert "StartTime" in resp["SecondaryStatusTransitions"][0]
assert "EndTime" in resp["SecondaryStatusTransitions"][0]
assert "StatusMessage" in resp["SecondaryStatusTransitions"][0]
assert "FinalMetricDataList" in resp
assert "MetricName" in resp["FinalMetricDataList"][0]
assert "Value" in resp["FinalMetricDataList"][0]
assert "Timestamp" in resp["FinalMetricDataList"][0]
pass
@mock_sagemaker
def test_list_training_jobs():
client = boto3.client("sagemaker", region_name="us-east-1")
name = "blah"
arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar"
test_training_job = MyTrainingJobModel(training_job_name=name, role_arn=arn)
test_training_job.save()
training_jobs = client.list_training_jobs()
assert len(training_jobs["TrainingJobSummaries"]).should.equal(1)
assert training_jobs["TrainingJobSummaries"][0]["TrainingJobName"].should.equal(
name
)
assert training_jobs["TrainingJobSummaries"][0]["TrainingJobArn"].should.match(
r"^arn:aws:sagemaker:.*:.*:training-job/{}$".format(name)
)
assert training_jobs.get("NextToken") is None
@mock_sagemaker
def test_list_training_jobs_multiple():
client = boto3.client("sagemaker", region_name="us-east-1")
name_job_1 = "blah"
arn_job_1 = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar"
test_training_job_1 = MyTrainingJobModel(
training_job_name=name_job_1, role_arn=arn_job_1
)
test_training_job_1.save()
name_job_2 = "blah2"
arn_job_2 = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar2"
test_training_job_2 = MyTrainingJobModel(
training_job_name=name_job_2, role_arn=arn_job_2
)
test_training_job_2.save()
training_jobs_limit = client.list_training_jobs(MaxResults=1)
assert len(training_jobs_limit["TrainingJobSummaries"]).should.equal(1)
training_jobs = client.list_training_jobs()
assert len(training_jobs["TrainingJobSummaries"]).should.equal(2)
assert training_jobs.get("NextToken").should.be.none
@mock_sagemaker
def test_list_training_jobs_none():
client = boto3.client("sagemaker", region_name="us-east-1")
training_jobs = client.list_training_jobs()
assert len(training_jobs["TrainingJobSummaries"]).should.equal(0)
@mock_sagemaker
def test_list_training_jobs_should_validate_input():
client = boto3.client("sagemaker", region_name="us-east-1")
junk_status_equals = "blah"
with pytest.raises(ClientError) as ex:
client.list_training_jobs(StatusEquals=junk_status_equals)
expected_error = f"1 validation errors detected: Value '{junk_status_equals}' at 'statusEquals' failed to satisfy constraint: Member must satisfy enum value set: ['Completed', 'Stopped', 'InProgress', 'Stopping', 'Failed']"
assert ex.value.response["Error"]["Code"] == "ValidationException"
assert ex.value.response["Error"]["Message"] == expected_error
junk_next_token = "asdf"
with pytest.raises(ClientError) as ex:
client.list_training_jobs(NextToken=junk_next_token)
assert ex.value.response["Error"]["Code"] == "ValidationException"
assert (
ex.value.response["Error"]["Message"]
== 'Invalid pagination token because "{0}".'
)
@mock_sagemaker
def test_list_training_jobs_with_name_filters():
client = boto3.client("sagemaker", region_name="us-east-1")
for i in range(5):
name = "xgboost-{}".format(i)
arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar-{}".format(i)
MyTrainingJobModel(training_job_name=name, role_arn=arn).save()
for i in range(5):
name = "vgg-{}".format(i)
arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/barfoo-{}".format(i)
MyTrainingJobModel(training_job_name=name, role_arn=arn).save()
xgboost_training_jobs = client.list_training_jobs(NameContains="xgboost")
assert len(xgboost_training_jobs["TrainingJobSummaries"]).should.equal(5)
training_jobs_with_2 = client.list_training_jobs(NameContains="2")
assert len(training_jobs_with_2["TrainingJobSummaries"]).should.equal(2)
@mock_sagemaker
def test_list_training_jobs_paginated():
client = boto3.client("sagemaker", region_name="us-east-1")
for i in range(5):
name = "xgboost-{}".format(i)
arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar-{}".format(i)
MyTrainingJobModel(training_job_name=name, role_arn=arn).save()
xgboost_training_job_1 = client.list_training_jobs(
NameContains="xgboost", MaxResults=1
)
assert len(xgboost_training_job_1["TrainingJobSummaries"]).should.equal(1)
assert xgboost_training_job_1["TrainingJobSummaries"][0][
"TrainingJobName"
].should.equal("xgboost-0")
assert xgboost_training_job_1.get("NextToken").should_not.be.none
xgboost_training_job_next = client.list_training_jobs(
NameContains="xgboost",
MaxResults=1,
NextToken=xgboost_training_job_1.get("NextToken"),
)
assert len(xgboost_training_job_next["TrainingJobSummaries"]).should.equal(1)
assert xgboost_training_job_next["TrainingJobSummaries"][0][
"TrainingJobName"
].should.equal("xgboost-1")
assert xgboost_training_job_next.get("NextToken").should_not.be.none
@mock_sagemaker
def test_list_training_jobs_paginated_with_target_in_middle():
client = boto3.client("sagemaker", region_name="us-east-1")
for i in range(5):
name = "xgboost-{}".format(i)
arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar-{}".format(i)
MyTrainingJobModel(training_job_name=name, role_arn=arn).save()
for i in range(5):
name = "vgg-{}".format(i)
arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/barfoo-{}".format(i)
MyTrainingJobModel(training_job_name=name, role_arn=arn).save()
vgg_training_job_1 = client.list_training_jobs(NameContains="vgg", MaxResults=1)
assert len(vgg_training_job_1["TrainingJobSummaries"]).should.equal(0)
assert vgg_training_job_1.get("NextToken").should_not.be.none
vgg_training_job_6 = client.list_training_jobs(NameContains="vgg", MaxResults=6)
assert len(vgg_training_job_6["TrainingJobSummaries"]).should.equal(1)
assert vgg_training_job_6["TrainingJobSummaries"][0][
"TrainingJobName"
].should.equal("vgg-0")
assert vgg_training_job_6.get("NextToken").should_not.be.none
vgg_training_job_10 = client.list_training_jobs(NameContains="vgg", MaxResults=10)
assert len(vgg_training_job_10["TrainingJobSummaries"]).should.equal(5)
assert vgg_training_job_10["TrainingJobSummaries"][-1][
"TrainingJobName"
].should.equal("vgg-4")
assert vgg_training_job_10.get("NextToken").should.be.none
@mock_sagemaker
def test_list_training_jobs_paginated_with_fragmented_targets():
client = boto3.client("sagemaker", region_name="us-east-1")
for i in range(5):
name = "xgboost-{}".format(i)
arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar-{}".format(i)
MyTrainingJobModel(training_job_name=name, role_arn=arn).save()
for i in range(5):
name = "vgg-{}".format(i)
arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/barfoo-{}".format(i)
MyTrainingJobModel(training_job_name=name, role_arn=arn).save()
training_jobs_with_2 = client.list_training_jobs(NameContains="2", MaxResults=8)
assert len(training_jobs_with_2["TrainingJobSummaries"]).should.equal(2)
assert training_jobs_with_2.get("NextToken").should_not.be.none
training_jobs_with_2_next = client.list_training_jobs(
2022-03-10 14:39:59 +00:00
NameContains="2", MaxResults=1, NextToken=training_jobs_with_2.get("NextToken")
)
assert len(training_jobs_with_2_next["TrainingJobSummaries"]).should.equal(0)
assert training_jobs_with_2_next.get("NextToken").should_not.be.none
training_jobs_with_2_next_next = client.list_training_jobs(
NameContains="2",
MaxResults=1,
NextToken=training_jobs_with_2_next.get("NextToken"),
)
assert len(training_jobs_with_2_next_next["TrainingJobSummaries"]).should.equal(0)
assert training_jobs_with_2_next_next.get("NextToken").should.be.none