Merge pull request #739 from okomestudio/ts/emr_list_clusters

Implement filters and pagers for some EMR end points
This commit is contained in:
Steve Pulec 2016-11-06 09:37:00 -05:00 committed by GitHub
commit eaf70ac349
6 changed files with 336 additions and 109 deletions

View File

@ -3,6 +3,7 @@ import datetime
import json
import re
import pytz
from boto.exception import JSONResponseError
from jinja2 import Environment, DictLoader, TemplateNotFound
@ -477,6 +478,11 @@ def to_str(value, spec):
return 'true' if value else 'false'
elif vtype == 'integer':
return str(value)
elif vtype == 'float':
return str(value)
elif vtype == 'timestamp':
return datetime.datetime.utcfromtimestamp(
value).replace(tzinfo=pytz.utc).isoformat()
elif vtype == 'string':
return str(value)
elif value is None:

View File

@ -1,8 +1,10 @@
from __future__ import unicode_literals
from datetime import datetime
from datetime import timedelta
import boto.emr
import pytz
from dateutil.parser import parse as dtparse
from moto.core import BaseBackend
from .utils import random_instance_group_id, random_cluster_id, random_step_id
@ -273,12 +275,24 @@ class ElasticMapReduceBackend(BaseBackend):
cluster = self.get_cluster(cluster_id)
cluster.add_tags(tags)
def describe_job_flows(self, job_flow_ids=None):
def describe_job_flows(self, job_flow_ids=None, job_flow_states=None, created_after=None, created_before=None):
clusters = self.clusters.values()
within_two_month = datetime.now(pytz.utc) - timedelta(days=60)
clusters = [c for c in clusters if c.creation_datetime >= within_two_month]
if job_flow_ids:
return [cluster for cluster in clusters if cluster.id in job_flow_ids]
else:
return clusters
clusters = [c for c in clusters if c.id in job_flow_ids]
if job_flow_states:
clusters = [c for c in clusters if c.state in job_flow_states]
if created_after:
created_after = dtparse(created_after)
clusters = [c for c in clusters if c.creation_datetime > created_after]
if created_before:
created_before = dtparse(created_before)
clusters = [c for c in clusters if c.creation_datetime < created_before]
return sorted(clusters, key=lambda x: x.id)[:512]
def describe_step(self, cluster_id, step_id):
cluster = self.clusters[cluster_id]
@ -296,17 +310,48 @@ class ElasticMapReduceBackend(BaseBackend):
if group_id in instance_group_ids
]
def list_bootstrap_actions(self, cluster_id):
return self.clusters[cluster_id].bootstrap_actions
def list_bootstrap_actions(self, cluster_id, marker=None):
max_items = 50
actions = self.clusters[cluster_id].bootstrap_actions
start_idx = 0 if marker is None else int(marker)
marker = None if len(actions) <= start_idx + max_items else str(start_idx + max_items)
return actions[start_idx:start_idx + max_items], marker
def list_clusters(self):
return self.clusters.values()
def list_clusters(self, cluster_states=None, created_after=None,
created_before=None, marker=None):
max_items = 50
clusters = self.clusters.values()
if cluster_states:
clusters = [c for c in clusters if c.state in cluster_states]
if created_after:
created_after = dtparse(created_after)
clusters = [c for c in clusters if c.creation_datetime > created_after]
if created_before:
created_before = dtparse(created_before)
clusters = [c for c in clusters if c.creation_datetime < created_before]
clusters = sorted(clusters, key=lambda x: x.id)
start_idx = 0 if marker is None else int(marker)
marker = None if len(clusters) <= start_idx + max_items else str(start_idx + max_items)
return clusters[start_idx:start_idx + max_items], marker
def list_instance_groups(self, cluster_id):
return self.clusters[cluster_id].instance_groups
def list_instance_groups(self, cluster_id, marker=None):
max_items = 50
groups = sorted(self.clusters[cluster_id].instance_groups,
key=lambda x: x.id)
start_idx = 0 if marker is None else int(marker)
marker = None if len(groups) <= start_idx + max_items else str(start_idx + max_items)
return groups[start_idx:start_idx + max_items], marker
def list_steps(self, cluster_id, step_states=None):
return self.clusters[cluster_id].steps
def list_steps(self, cluster_id, marker=None, step_ids=None, step_states=None):
max_items = 50
steps = self.clusters[cluster_id].steps
if step_ids:
steps = [s for s in steps if s.id in step_ids]
if step_states:
steps = [s for s in steps if s.state in step_states]
start_idx = 0 if marker is None else int(marker)
marker = None if len(steps) <= start_idx + max_items else str(start_idx + max_items)
return steps[start_idx:start_idx + max_items], marker
def modify_instance_groups(self, instance_groups):
result_groups = []
@ -333,10 +378,11 @@ class ElasticMapReduceBackend(BaseBackend):
cluster.set_termination_protection(value)
def terminate_job_flows(self, job_flow_ids):
clusters = [cluster for cluster in self.describe_job_flows()
if cluster.id in job_flow_ids]
for cluster in clusters:
clusters = []
for job_flow_id in job_flow_ids:
cluster = self.clusters[job_flow_id]
cluster.terminate()
clusters.append(cluster)
return clusters

View File

@ -101,8 +101,11 @@ class ElasticMapReduceResponse(BaseResponse):
@generate_boto3_response('DescribeJobFlows')
def describe_job_flows(self):
created_after = self._get_param('CreatedAfter')
created_before = self._get_param('CreatedBefore')
job_flow_ids = self._get_multi_param("JobFlowIds.member")
clusters = self.backend.describe_job_flows(job_flow_ids)
job_flow_states = self._get_multi_param('JobFlowStates.member')
clusters = self.backend.describe_job_flows(job_flow_ids, job_flow_states, created_after, created_before)
template = self.response_template(DESCRIBE_JOB_FLOWS_TEMPLATE)
return template.render(clusters=clusters)
@ -120,22 +123,28 @@ class ElasticMapReduceResponse(BaseResponse):
@generate_boto3_response('ListBootstrapActions')
def list_bootstrap_actions(self):
cluster_id = self._get_param('ClusterId')
bootstrap_actions = self.backend.list_bootstrap_actions(cluster_id)
marker = self._get_param('Marker')
bootstrap_actions, marker = self.backend.list_bootstrap_actions(cluster_id, marker)
template = self.response_template(LIST_BOOTSTRAP_ACTIONS_TEMPLATE)
return template.render(bootstrap_actions=bootstrap_actions)
return template.render(bootstrap_actions=bootstrap_actions, marker=marker)
@generate_boto3_response('ListClusters')
def list_clusters(self):
clusters = self.backend.list_clusters()
cluster_states = self._get_multi_param('ClusterStates.member')
created_after = self._get_param('CreatedAfter')
created_before = self._get_param('CreatedBefore')
marker = self._get_param('Marker')
clusters, marker = self.backend.list_clusters(cluster_states, created_after, created_before, marker)
template = self.response_template(LIST_CLUSTERS_TEMPLATE)
return template.render(clusters=clusters)
return template.render(clusters=clusters, marker=marker)
@generate_boto3_response('ListInstanceGroups')
def list_instance_groups(self):
cluster_id = self._get_param('ClusterId')
instance_groups = self.backend.list_instance_groups(cluster_id)
marker = self._get_param('Marker')
instance_groups, marker = self.backend.list_instance_groups(cluster_id, marker=marker)
template = self.response_template(LIST_INSTANCE_GROUPS_TEMPLATE)
return template.render(instance_groups=instance_groups)
return template.render(instance_groups=instance_groups, marker=marker)
def list_instances(self):
raise NotImplementedError
@ -143,9 +152,12 @@ class ElasticMapReduceResponse(BaseResponse):
@generate_boto3_response('ListSteps')
def list_steps(self):
cluster_id = self._get_param('ClusterId')
steps = self.backend.list_steps(cluster_id)
marker = self._get_param('Marker')
step_ids = self._get_multi_param('StepIds.member')
step_states = self._get_multi_param('StepStates.member')
steps, marker = self.backend.list_steps(cluster_id, marker=marker, step_ids=step_ids, step_states=step_states)
template = self.response_template(LIST_STEPS_TEMPLATE)
return template.render(steps=steps)
return template.render(steps=steps, marker=marker)
@generate_boto3_response('ModifyInstanceGroups')
def modify_instance_groups(self):
@ -623,6 +635,9 @@ LIST_BOOTSTRAP_ACTIONS_TEMPLATE = """<ListBootstrapActionsResponse xmlns="http:/
</member>
{% endfor %}
</BootstrapActions>
{% if marker is not none %}
<Marker>{{ marker }}</Marker>
{% endif %}
</ListBootstrapActionsResult>
<ResponseMetadata>
<RequestId>df6f4f4a-ed85-11dd-9877-6fad448a8419</RequestId>
@ -658,7 +673,9 @@ LIST_CLUSTERS_TEMPLATE = """<ListClustersResponse xmlns="http://elasticmapreduce
</member>
{% endfor %}
</Clusters>
<Marker></Marker>
{% if marker is not none %}
<Marker>{{ marker }}</Marker>
{% endif %}
</ListClustersResult>
<ResponseMetadata>
<RequestId>2690d7eb-ed86-11dd-9877-6fad448a8418</RequestId>
@ -706,6 +723,9 @@ LIST_INSTANCE_GROUPS_TEMPLATE = """<ListInstanceGroupsResponse xmlns="http://ela
</member>
{% endfor %}
</InstanceGroups>
{% if marker is not none %}
<Marker>{{ marker }}</Marker>
{% endif %}
</ListInstanceGroupsResult>
<ResponseMetadata>
<RequestId>8296d8b8-ed85-11dd-9877-6fad448a8419</RequestId>
@ -760,6 +780,9 @@ LIST_STEPS_TEMPLATE = """<ListStepsResponse xmlns="http://elasticmapreduce.amazo
</member>
{% endfor %}
</Steps>
{% if marker is not none %}
<Marker>{{ marker }}</Marker>
{% endif %}
</ListStepsResult>
<ResponseMetadata>
<RequestId>df6f4f4a-ed85-11dd-9877-6fad448a8419</RequestId>

View File

@ -10,7 +10,8 @@ install_requires = [
"xmltodict",
"six",
"werkzeug",
"pytz"
"pytz",
"python-dateutil",
]
extras_require = {

View File

@ -1,6 +1,9 @@
from __future__ import unicode_literals
import time
from datetime import datetime
import boto
import pytz
from boto.emr.bootstrap_action import BootstrapAction
from boto.emr.instance_group import InstanceGroup
from boto.emr.step import StreamingStep
@ -104,18 +107,53 @@ def test_describe_cluster():
@mock_emr
def test_describe_jobflows():
conn = boto.connect_emr()
job1_id = conn.run_jobflow(**run_jobflow_args)
job2_id = conn.run_jobflow(**run_jobflow_args)
args = run_jobflow_args.copy()
expected = {}
for idx in range(400):
cluster_name = 'cluster' + str(idx)
args['name'] = cluster_name
cluster_id = conn.run_jobflow(**args)
expected[cluster_id] = {
'id': cluster_id,
'name': cluster_name,
'state': 'WAITING'
}
# need sleep since it appears the timestamp is always rounded to
# the nearest second internally
time.sleep(1)
timestamp = datetime.now(pytz.utc)
time.sleep(1)
for idx in range(400, 600):
cluster_name = 'cluster' + str(idx)
args['name'] = cluster_name
cluster_id = conn.run_jobflow(**args)
conn.terminate_jobflow(cluster_id)
expected[cluster_id] = {
'id': cluster_id,
'name': cluster_name,
'state': 'TERMINATED'
}
jobs = conn.describe_jobflows()
jobs.should.have.length_of(2)
jobs.should.have.length_of(512)
jobs = conn.describe_jobflows(jobflow_ids=[job2_id])
jobs.should.have.length_of(1)
jobs[0].jobflowid.should.equal(job2_id)
for cluster_id, y in expected.items():
resp = conn.describe_jobflows(jobflow_ids=[cluster_id])
resp.should.have.length_of(1)
resp[0].jobflowid.should.equal(cluster_id)
first_job = conn.describe_jobflow(job1_id)
first_job.jobflowid.should.equal(job1_id)
resp = conn.describe_jobflows(states=['WAITING'])
resp.should.have.length_of(400)
for x in resp:
x.state.should.equal('WAITING')
resp = conn.describe_jobflows(created_before=timestamp)
resp.should.have.length_of(400)
resp = conn.describe_jobflows(created_after=timestamp)
resp.should.have.length_of(200)
@mock_emr
@ -204,43 +242,69 @@ def test_describe_jobflow():
@mock_emr
def test_list_clusters():
conn = boto.connect_emr()
args = run_jobflow_args.copy()
args['name'] = 'jobflow1'
cluster1_id = conn.run_jobflow(**args)
args['name'] = 'jobflow2'
cluster2_id = conn.run_jobflow(**args)
conn.terminate_jobflow(cluster2_id)
expected = {}
summary = conn.list_clusters()
clusters = summary.clusters
clusters.should.have.length_of(2)
for idx in range(40):
cluster_name = 'jobflow' + str(idx)
args['name'] = cluster_name
cluster_id = conn.run_jobflow(**args)
expected[cluster_id] = {
'id': cluster_id,
'name': cluster_name,
'normalizedinstancehours': '0',
'state': 'WAITING'
}
expected = {
cluster1_id: {
'id': cluster1_id,
'name': 'jobflow1',
'normalizedinstancehours': 0,
'state': 'WAITING'},
cluster2_id: {
'id': cluster2_id,
'name': 'jobflow2',
'normalizedinstancehours': 0,
'state': 'TERMINATED'},
}
# need sleep since it appears the timestamp is always rounded to
# the nearest second internally
time.sleep(1)
timestamp = datetime.now(pytz.utc)
time.sleep(1)
for x in clusters:
y = expected[x.id]
x.id.should.equal(y['id'])
x.name.should.equal(y['name'])
int(x.normalizedinstancehours).should.equal(y['normalizedinstancehours'])
x.status.state.should.equal(y['state'])
x.status.timeline.creationdatetime.should.be.a(six.string_types)
if y['state'] == 'TERMINATED':
x.status.timeline.enddatetime.should.be.a(six.string_types)
else:
x.status.timeline.shouldnt.have.property('enddatetime')
x.status.timeline.readydatetime.should.be.a(six.string_types)
for idx in range(40, 70):
cluster_name = 'jobflow' + str(idx)
args['name'] = cluster_name
cluster_id = conn.run_jobflow(**args)
conn.terminate_jobflow(cluster_id)
expected[cluster_id] = {
'id': cluster_id,
'name': cluster_name,
'normalizedinstancehours': '0',
'state': 'TERMINATED'
}
args = {}
while 1:
resp = conn.list_clusters(**args)
clusters = resp.clusters
len(clusters).should.be.lower_than_or_equal_to(50)
for x in clusters:
y = expected[x.id]
x.id.should.equal(y['id'])
x.name.should.equal(y['name'])
x.normalizedinstancehours.should.equal(y['normalizedinstancehours'])
x.status.state.should.equal(y['state'])
x.status.timeline.creationdatetime.should.be.a(six.string_types)
if y['state'] == 'TERMINATED':
x.status.timeline.enddatetime.should.be.a(six.string_types)
else:
x.status.timeline.shouldnt.have.property('enddatetime')
x.status.timeline.readydatetime.should.be.a(six.string_types)
if not hasattr(resp, 'marker'):
break
args = {'marker': resp.marker}
resp = conn.list_clusters(cluster_states=['TERMINATED'])
resp.clusters.should.have.length_of(30)
for x in resp.clusters:
x.status.state.should.equal('TERMINATED')
resp = conn.list_clusters(created_before=timestamp)
resp.clusters.should.have.length_of(40)
resp = conn.list_clusters(created_after=timestamp)
resp.clusters.should.have.length_of(30)
@mock_emr
@ -516,7 +580,8 @@ def test_steps():
expected = dict((s.name, s) for s in input_steps)
for x in conn.list_steps(cluster_id).steps:
steps = conn.list_steps(cluster_id).steps
for x in steps:
y = expected[x.name]
# actiononfailure
list(arg.value for arg in x.config.args).should.equal([
@ -554,6 +619,17 @@ def test_steps():
# x.status.timeline.enddatetime.should.be.a(six.string_types)
# x.status.timeline.startdatetime.should.be.a(six.string_types)
@requires_boto_gte('2.39')
def test_list_steps_with_states():
# boto's list_steps prior to 2.39 has a bug that ignores
# step_states argument.
steps = conn.list_steps(cluster_id).steps
step_id = steps[0].id
steps = conn.list_steps(cluster_id, step_states=['STARTING']).steps
steps.should.have.length_of(1)
steps[0].id.should.equal(step_id)
test_list_steps_with_states()
@mock_emr
def test_tags():

View File

@ -1,8 +1,11 @@
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import time
from copy import deepcopy
from datetime import datetime
import boto3
import pytz
import six
import sure # noqa
from botocore.exceptions import ClientError
@ -121,19 +124,54 @@ def test_describe_cluster():
@mock_emr
def test_describe_job_flows():
client = boto3.client('emr', region_name='us-east-1')
cluster1_id = client.run_job_flow(**run_job_flow_args)['JobFlowId']
cluster2_id = client.run_job_flow(**run_job_flow_args)['JobFlowId']
args = deepcopy(run_job_flow_args)
expected = {}
for idx in range(400):
cluster_name = 'cluster' + str(idx)
args['Name'] = cluster_name
cluster_id = client.run_job_flow(**args)['JobFlowId']
expected[cluster_id] = {
'Id': cluster_id,
'Name': cluster_name,
'State': 'WAITING'
}
# need sleep since it appears the timestamp is always rounded to
# the nearest second internally
time.sleep(1)
timestamp = datetime.now(pytz.utc)
time.sleep(1)
for idx in range(400, 600):
cluster_name = 'cluster' + str(idx)
args['Name'] = cluster_name
cluster_id = client.run_job_flow(**args)['JobFlowId']
client.terminate_job_flows(JobFlowIds=[cluster_id])
expected[cluster_id] = {
'Id': cluster_id,
'Name': cluster_name,
'State': 'TERMINATED'
}
resp = client.describe_job_flows()
resp['JobFlows'].should.have.length_of(2)
resp['JobFlows'].should.have.length_of(512)
resp = client.describe_job_flows(JobFlowIds=[cluster2_id])
resp['JobFlows'].should.have.length_of(1)
resp['JobFlows'][0]['JobFlowId'].should.equal(cluster2_id)
for cluster_id, y in expected.items():
resp = client.describe_job_flows(JobFlowIds=[cluster_id])
resp['JobFlows'].should.have.length_of(1)
resp['JobFlows'][0]['JobFlowId'].should.equal(cluster_id)
resp = client.describe_job_flows(JobFlowIds=[cluster1_id])
resp['JobFlows'].should.have.length_of(1)
resp['JobFlows'][0]['JobFlowId'].should.equal(cluster1_id)
resp = client.describe_job_flows(JobFlowStates=['WAITING'])
resp['JobFlows'].should.have.length_of(400)
for x in resp['JobFlows']:
x['ExecutionStatusDetail']['State'].should.equal('WAITING')
resp = client.describe_job_flows(CreatedBefore=timestamp)
resp['JobFlows'].should.have.length_of(400)
resp = client.describe_job_flows(CreatedAfter=timestamp)
resp['JobFlows'].should.have.length_of(200)
@mock_emr
@ -203,41 +241,69 @@ def test_describe_job_flow():
def test_list_clusters():
client = boto3.client('emr', region_name='us-east-1')
args = deepcopy(run_job_flow_args)
args['Name'] = 'jobflow1'
cluster1_id = client.run_job_flow(**args)['JobFlowId']
args['Name'] = 'jobflow2'
cluster2_id = client.run_job_flow(**args)['JobFlowId']
client.terminate_job_flows(JobFlowIds=[cluster2_id])
expected = {}
summary = client.list_clusters()
clusters = summary['Clusters']
clusters.should.have.length_of(2)
expected = {
cluster1_id: {
'Id': cluster1_id,
'Name': 'jobflow1',
for idx in range(40):
cluster_name = 'jobflow' + str(idx)
args['Name'] = cluster_name
cluster_id = client.run_job_flow(**args)['JobFlowId']
expected[cluster_id] = {
'Id': cluster_id,
'Name': cluster_name,
'NormalizedInstanceHours': 0,
'State': 'WAITING'},
cluster2_id: {
'Id': cluster2_id,
'Name': 'jobflow2',
'NormalizedInstanceHours': 0,
'State': 'TERMINATED'},
}
'State': 'WAITING'
}
for x in clusters:
y = expected[x['Id']]
x['Id'].should.equal(y['Id'])
x['Name'].should.equal(y['Name'])
x['NormalizedInstanceHours'].should.equal(y['NormalizedInstanceHours'])
x['Status']['State'].should.equal(y['State'])
x['Status']['Timeline']['CreationDateTime'].should.be.a('datetime.datetime')
if y['State'] == 'TERMINATED':
x['Status']['Timeline']['EndDateTime'].should.be.a('datetime.datetime')
else:
x['Status']['Timeline'].shouldnt.have.key('EndDateTime')
x['Status']['Timeline']['ReadyDateTime'].should.be.a('datetime.datetime')
# need sleep since it appears the timestamp is always rounded to
# the nearest second internally
time.sleep(1)
timestamp = datetime.now(pytz.utc)
time.sleep(1)
for idx in range(40, 70):
cluster_name = 'jobflow' + str(idx)
args['Name'] = cluster_name
cluster_id = client.run_job_flow(**args)['JobFlowId']
client.terminate_job_flows(JobFlowIds=[cluster_id])
expected[cluster_id] = {
'Id': cluster_id,
'Name': cluster_name,
'NormalizedInstanceHours': 0,
'State': 'TERMINATED'
}
args = {}
while 1:
resp = client.list_clusters(**args)
clusters = resp['Clusters']
len(clusters).should.be.lower_than_or_equal_to(50)
for x in clusters:
y = expected[x['Id']]
x['Id'].should.equal(y['Id'])
x['Name'].should.equal(y['Name'])
x['NormalizedInstanceHours'].should.equal(y['NormalizedInstanceHours'])
x['Status']['State'].should.equal(y['State'])
x['Status']['Timeline']['CreationDateTime'].should.be.a('datetime.datetime')
if y['State'] == 'TERMINATED':
x['Status']['Timeline']['EndDateTime'].should.be.a('datetime.datetime')
else:
x['Status']['Timeline'].shouldnt.have.key('EndDateTime')
x['Status']['Timeline']['ReadyDateTime'].should.be.a('datetime.datetime')
marker = resp.get('Marker')
if marker is None:
break
args = {'Marker': marker}
resp = client.list_clusters(ClusterStates=['TERMINATED'])
resp['Clusters'].should.have.length_of(30)
for x in resp['Clusters']:
x['Status']['State'].should.equal('TERMINATED')
resp = client.list_clusters(CreatedBefore=timestamp)
resp['Clusters'].should.have.length_of(40)
resp = client.list_clusters(CreatedAfter=timestamp)
resp['Clusters'].should.have.length_of(30)
@mock_emr
@ -567,6 +633,15 @@ def test_steps():
# x['Status']['Timeline']['EndDateTime'].should.be.a('datetime.datetime')
# x['Status']['Timeline']['StartDateTime'].should.be.a('datetime.datetime')
step_id = steps[0]['Id']
steps = client.list_steps(ClusterId=cluster_id, StepIds=[step_id])['Steps']
steps.should.have.length_of(1)
steps[0]['Id'].should.equal(step_id)
steps = client.list_steps(ClusterId=cluster_id, StepStates=['STARTING'])['Steps']
steps.should.have.length_of(1)
steps[0]['Id'].should.equal(step_id)
@mock_emr
def test_tags():