cloudwatch: filter 'dimensions' for get_metric_data (#5041)

This commit is contained in:
steffyP 2022-04-21 13:32:57 +02:00 committed by GitHub
parent e63fc08db2
commit f8c2b621db
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 136 additions and 1 deletions

View File

@ -41,6 +41,9 @@ class Dimension(object):
def __ne__(self, item): # Only needed on Py2; Py3 defines it implicitly
return self != item
def __lt__(self, other):
return self.name < other.name and self.value < other.name
class Metric(object):
def __init__(self, metric_name, namespace, dimensions):
@ -478,6 +481,7 @@ class CloudWatchBackend(BaseBackend):
query_ns = query["metric_stat._metric._namespace"]
query_name = query["metric_stat._metric._metric_name"]
delta = timedelta(seconds=int(query["metric_stat._period"]))
dimensions = self._extract_dimensions_from_get_metric_data_query(query)
result_vals = []
timestamps = []
stat = query["metric_stat._stat"]
@ -494,11 +498,19 @@ class CloudWatchBackend(BaseBackend):
for md in period_md
if md.namespace == query_ns and md.name == query_name
]
if dimensions:
query_period_data = [
md
for md in period_md
if sorted(md.dimensions) == sorted(dimensions)
]
metric_values = [m.value for m in query_period_data]
if len(metric_values) > 0:
if stat == "Average":
if stat == "SampleCount":
result_vals.append(len(metric_values))
elif stat == "Average":
result_vals.append(sum(metric_values) / len(metric_values))
elif stat == "Minimum":
result_vals.append(min(metric_values))
@ -679,5 +691,20 @@ class CloudWatchBackend(BaseBackend):
else:
return None, metrics
def _extract_dimensions_from_get_metric_data_query(self, query):
dimensions = []
prefix = "metric_stat._metric._dimensions.member."
suffix_name = "._name"
suffix_value = "._value"
counter = 1
while query.get(f"{prefix}{counter}{suffix_name}") and counter <= 10:
name = query.get(f"{prefix}{counter}{suffix_name}")
value = query.get(f"{prefix}{counter}{suffix_value}")
dimensions.append(Dimension(name=name, value=value))
counter = counter + 1
return dimensions
cloudwatch_backends = BackendDict(CloudWatchBackend, "cloudwatch")

View File

@ -785,6 +785,114 @@ def test_get_metric_data_for_multiple_metrics():
res2["Values"].should.equal([25.0])
@mock_cloudwatch
def test_get_metric_data_for_dimensions():
utc_now = datetime.now(tz=pytz.utc)
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
namespace = "my_namespace/"
# If the metric is created with multiple dimensions, then the data points for that metric can be retrieved only by specifying all the configured dimensions.
# https://aws.amazon.com/premiumsupport/knowledge-center/cloudwatch-getmetricstatistics-data/
server_prod = {"Name": "Server", "Value": "Prod"}
dimension_berlin = [server_prod, {"Name": "Domain", "Value": "Berlin"}]
dimension_frankfurt = [server_prod, {"Name": "Domain", "Value": "Frankfurt"}]
# put metric data
cloudwatch.put_metric_data(
Namespace=namespace,
MetricData=[
{
"MetricName": "metric1",
"Value": 50,
"Dimensions": dimension_berlin,
"Unit": "Seconds",
"Timestamp": utc_now,
}
],
)
cloudwatch.put_metric_data(
Namespace=namespace,
MetricData=[
{
"MetricName": "metric1",
"Value": 25,
"Unit": "Seconds",
"Dimensions": dimension_frankfurt,
"Timestamp": utc_now,
}
],
)
# get_metric_data
response = cloudwatch.get_metric_data(
MetricDataQueries=[
{
"Id": "result1",
"MetricStat": {
"Metric": {
"Namespace": namespace,
"MetricName": "metric1",
"Dimensions": dimension_frankfurt,
},
"Period": 60,
"Stat": "SampleCount",
},
},
{
"Id": "result2",
"MetricStat": {
"Metric": {
"Namespace": namespace,
"MetricName": "metric1",
"Dimensions": dimension_berlin,
},
"Period": 60,
"Stat": "Sum",
},
},
{
"Id": "result3",
"MetricStat": {
"Metric": {
"Namespace": namespace,
"MetricName": "metric1",
"Dimensions": [server_prod],
},
"Period": 60,
"Stat": "Sum",
},
},
{
"Id": "result4",
"MetricStat": {
"Metric": {"Namespace": namespace, "MetricName": "metric1"},
"Period": 60,
"Stat": "Sum",
},
},
],
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
)
#
len(response["MetricDataResults"]).should.equal(4)
res1 = [res for res in response["MetricDataResults"] if res["Id"] == "result1"][0]
# expect sample count for dimension_frankfurt
res1["Values"].should.equal([1.0])
res2 = [res for res in response["MetricDataResults"] if res["Id"] == "result2"][0]
# expect sum for dimension_berlin
res2["Values"].should.equal([50.0])
res3 = [res for res in response["MetricDataResults"] if res["Id"] == "result3"][0]
# expect no result, as server_prod is only a part of other dimensions, e.g. there is no match
res3["Values"].should.equal([])
res4 = [res for res in response["MetricDataResults"] if res["Id"] == "result4"][0]
# expect sum of both metrics, as we did not filter for dimensions
res4["Values"].should.equal([75.0])
@mock_cloudwatch
@mock_s3
def test_cloudwatch_return_s3_metrics():