CloudWatch: support statistic-values in put-metric-data (#5793)
This commit is contained in:
parent
bdef72d481
commit
fbc3710f69
@ -1,5 +1,4 @@
|
|||||||
import json
|
import json
|
||||||
import statistics
|
|
||||||
|
|
||||||
from moto.core import BaseBackend, BackendDict, BaseModel, CloudWatchMetricProvider
|
from moto.core import BaseBackend, BackendDict, BaseModel, CloudWatchMetricProvider
|
||||||
from moto.core.utils import (
|
from moto.core.utils import (
|
||||||
@ -16,6 +15,7 @@ from .exceptions import (
|
|||||||
ValidationError,
|
ValidationError,
|
||||||
InvalidParameterValue,
|
InvalidParameterValue,
|
||||||
ResourceNotFoundException,
|
ResourceNotFoundException,
|
||||||
|
InvalidParameterCombination,
|
||||||
)
|
)
|
||||||
from .utils import make_arn_for_dashboard, make_arn_for_alarm
|
from .utils import make_arn_for_dashboard, make_arn_for_alarm
|
||||||
from dateutil import parser
|
from dateutil import parser
|
||||||
@ -211,19 +211,21 @@ def are_dimensions_same(
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
class MetricDatum(BaseModel):
|
class MetricDatumBase(BaseModel):
|
||||||
|
"""
|
||||||
|
Base class for Metrics Datum (represents value or statistics set by put-metric-data)
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
namespace: str,
|
namespace: str,
|
||||||
name: str,
|
name: str,
|
||||||
value: float,
|
|
||||||
dimensions: List[Dict[str, str]],
|
dimensions: List[Dict[str, str]],
|
||||||
timestamp: datetime,
|
timestamp: datetime,
|
||||||
unit: Any = None,
|
unit: Any = None,
|
||||||
):
|
):
|
||||||
self.namespace = namespace
|
self.namespace = namespace
|
||||||
self.name = name
|
self.name = name
|
||||||
self.value = value
|
|
||||||
self.timestamp = timestamp or datetime.utcnow().replace(tzinfo=tzutc())
|
self.timestamp = timestamp or datetime.utcnow().replace(tzinfo=tzutc())
|
||||||
self.dimensions = [
|
self.dimensions = [
|
||||||
Dimension(dimension["Name"], dimension["Value"]) for dimension in dimensions
|
Dimension(dimension["Name"], dimension["Value"]) for dimension in dimensions
|
||||||
@ -235,7 +237,7 @@ class MetricDatum(BaseModel):
|
|||||||
namespace: Optional[str],
|
namespace: Optional[str],
|
||||||
name: Optional[str],
|
name: Optional[str],
|
||||||
dimensions: List[Dict[str, str]],
|
dimensions: List[Dict[str, str]],
|
||||||
already_present_metrics: Optional[List["MetricDatum"]] = None,
|
already_present_metrics: Optional[List["MetricDatumBase"]] = None,
|
||||||
) -> bool:
|
) -> bool:
|
||||||
if namespace and namespace != self.namespace:
|
if namespace and namespace != self.namespace:
|
||||||
return False
|
return False
|
||||||
@ -261,6 +263,48 @@ class MetricDatum(BaseModel):
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
class MetricDatum(MetricDatumBase):
|
||||||
|
"""
|
||||||
|
Single Metric value, represents the "value" (or a single value from the list "values") used in put-metric-data
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
namespace: str,
|
||||||
|
name: str,
|
||||||
|
value: float,
|
||||||
|
dimensions: List[Dict[str, str]],
|
||||||
|
timestamp: datetime,
|
||||||
|
unit: Any = None,
|
||||||
|
):
|
||||||
|
super().__init__(namespace, name, dimensions, timestamp, unit)
|
||||||
|
self.value = value
|
||||||
|
|
||||||
|
|
||||||
|
class MetricAggregatedDatum(MetricDatumBase):
|
||||||
|
"""
|
||||||
|
Metric Statistics, represents "statistics-values" used in put-metric-data
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
namespace: str,
|
||||||
|
name: str,
|
||||||
|
min_stat: float,
|
||||||
|
max_stat: float,
|
||||||
|
sample_count: float,
|
||||||
|
sum_stat: float,
|
||||||
|
dimensions: List[Dict[str, str]],
|
||||||
|
timestamp: datetime,
|
||||||
|
unit: Any = None,
|
||||||
|
):
|
||||||
|
super().__init__(namespace, name, dimensions, timestamp, unit)
|
||||||
|
self.min = min_stat
|
||||||
|
self.max = max_stat
|
||||||
|
self.sample_count = sample_count
|
||||||
|
self.sum = sum_stat
|
||||||
|
|
||||||
|
|
||||||
class Dashboard(BaseModel):
|
class Dashboard(BaseModel):
|
||||||
def __init__(self, account_id: str, name: str, body: str):
|
def __init__(self, account_id: str, name: str, body: str):
|
||||||
# Guaranteed to be unique for now as the name is also the key of a dictionary where they are stored
|
# Guaranteed to be unique for now as the name is also the key of a dictionary where they are stored
|
||||||
@ -285,46 +329,115 @@ class Dashboard(BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
class Statistics:
|
class Statistics:
|
||||||
def __init__(self, stats: List[str], dt: datetime):
|
"""
|
||||||
self.timestamp = iso_8601_datetime_without_milliseconds(dt)
|
Helper class to calculate statics for a list of metrics (MetricDatum, or MetricAggregatedDatum)
|
||||||
self.values: List[float] = []
|
"""
|
||||||
|
|
||||||
|
def __init__(self, stats: List[str], dt: datetime, unit: Optional[str] = None):
|
||||||
|
self.timestamp: str = (
|
||||||
|
iso_8601_datetime_without_milliseconds(dt) or self.timestamp_iso_8601_now()
|
||||||
|
)
|
||||||
|
self.metric_data: List[MetricDatumBase] = []
|
||||||
self.stats = stats
|
self.stats = stats
|
||||||
self.unit = None
|
self.unit = unit
|
||||||
|
|
||||||
|
def get_statistics_for_type(self, stat: str) -> Optional[SupportsFloat]:
|
||||||
|
"""Calculates the statistic for the metric_data provided
|
||||||
|
|
||||||
|
:param stat: the statistic that should be returned, case-sensitive (Sum, Average, Minium, Maximum, SampleCount)
|
||||||
|
:return: the statistic of the current 'metric_data' in this class, or 0
|
||||||
|
"""
|
||||||
|
if stat == "Sum":
|
||||||
|
return self.sum
|
||||||
|
if stat == "Average":
|
||||||
|
return self.average
|
||||||
|
if stat == "Minimum":
|
||||||
|
return self.minimum
|
||||||
|
if stat == "Maximum":
|
||||||
|
return self.maximum
|
||||||
|
if stat == "SampleCount":
|
||||||
|
return self.sample_count
|
||||||
|
return None
|
||||||
|
|
||||||
|
@property
|
||||||
|
def metric_single_values_list(self) -> List[float]:
|
||||||
|
"""
|
||||||
|
:return: list of all values for the MetricDatum instances of the metric_data list
|
||||||
|
"""
|
||||||
|
return [m.value for m in self.metric_data or [] if isinstance(m, MetricDatum)]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def metric_aggregated_list(self) -> List[MetricAggregatedDatum]:
|
||||||
|
"""
|
||||||
|
:return: list of all MetricAggregatedDatum instances from the metric_data list
|
||||||
|
"""
|
||||||
|
return [
|
||||||
|
s for s in self.metric_data or [] if isinstance(s, MetricAggregatedDatum)
|
||||||
|
]
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def sample_count(self) -> Optional[SupportsFloat]:
|
def sample_count(self) -> Optional[SupportsFloat]:
|
||||||
if "SampleCount" not in self.stats:
|
if "SampleCount" not in self.stats:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
return len(self.values)
|
return self.calc_sample_count()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def sum(self) -> Optional[SupportsFloat]:
|
def sum(self) -> Optional[SupportsFloat]:
|
||||||
if "Sum" not in self.stats:
|
if "Sum" not in self.stats:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
return sum(self.values)
|
return self.calc_sum()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def minimum(self) -> Optional[SupportsFloat]:
|
def minimum(self) -> Optional[SupportsFloat]:
|
||||||
if "Minimum" not in self.stats:
|
if "Minimum" not in self.stats:
|
||||||
return None
|
return None
|
||||||
|
if not self.metric_single_values_list and not self.metric_aggregated_list:
|
||||||
|
return None
|
||||||
|
|
||||||
return min(self.values)
|
metrics = self.metric_single_values_list + [
|
||||||
|
s.min for s in self.metric_aggregated_list
|
||||||
|
]
|
||||||
|
return min(metrics)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def maximum(self) -> Optional[SupportsFloat]:
|
def maximum(self) -> Optional[SupportsFloat]:
|
||||||
if "Maximum" not in self.stats:
|
if "Maximum" not in self.stats:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
return max(self.values)
|
if not self.metric_single_values_list and not self.metric_aggregated_list:
|
||||||
|
return None
|
||||||
|
|
||||||
|
metrics = self.metric_single_values_list + [
|
||||||
|
s.max for s in self.metric_aggregated_list
|
||||||
|
]
|
||||||
|
return max(metrics)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def average(self) -> Optional[SupportsFloat]:
|
def average(self) -> Optional[SupportsFloat]:
|
||||||
if "Average" not in self.stats:
|
if "Average" not in self.stats:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
return statistics.mean(self.values)
|
sample_count = self.calc_sample_count()
|
||||||
|
|
||||||
|
if not sample_count:
|
||||||
|
return None
|
||||||
|
|
||||||
|
return self.calc_sum() / sample_count
|
||||||
|
|
||||||
|
def calc_sample_count(self) -> float:
|
||||||
|
return len(self.metric_single_values_list) + sum(
|
||||||
|
[s.sample_count for s in self.metric_aggregated_list]
|
||||||
|
)
|
||||||
|
|
||||||
|
def calc_sum(self) -> float:
|
||||||
|
return sum(self.metric_single_values_list) + sum(
|
||||||
|
[s.sum for s in self.metric_aggregated_list]
|
||||||
|
)
|
||||||
|
|
||||||
|
def timestamp_iso_8601_now(self) -> str:
|
||||||
|
return iso_8601_datetime_without_milliseconds(datetime.now()) # type: ignore[return-value]
|
||||||
|
|
||||||
|
|
||||||
class CloudWatchBackend(BaseBackend):
|
class CloudWatchBackend(BaseBackend):
|
||||||
@ -332,8 +445,8 @@ class CloudWatchBackend(BaseBackend):
|
|||||||
super().__init__(region_name, account_id)
|
super().__init__(region_name, account_id)
|
||||||
self.alarms: Dict[str, FakeAlarm] = {}
|
self.alarms: Dict[str, FakeAlarm] = {}
|
||||||
self.dashboards: Dict[str, Dashboard] = {}
|
self.dashboards: Dict[str, Dashboard] = {}
|
||||||
self.metric_data: List[MetricDatum] = []
|
self.metric_data: List[MetricDatumBase] = []
|
||||||
self.paged_metric_data: Dict[str, List[MetricDatum]] = {}
|
self.paged_metric_data: Dict[str, List[MetricDatumBase]] = {}
|
||||||
self.tagger = TaggingService()
|
self.tagger = TaggingService()
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@ -348,7 +461,7 @@ class CloudWatchBackend(BaseBackend):
|
|||||||
@property
|
@property
|
||||||
# Retrieve a list of all OOTB metrics that are provided by metrics providers
|
# Retrieve a list of all OOTB metrics that are provided by metrics providers
|
||||||
# Computed on the fly
|
# Computed on the fly
|
||||||
def aws_metric_data(self) -> List[MetricDatum]:
|
def aws_metric_data(self) -> List[MetricDatumBase]:
|
||||||
providers = CloudWatchMetricProvider.__subclasses__()
|
providers = CloudWatchMetricProvider.__subclasses__()
|
||||||
md = []
|
md = []
|
||||||
for provider in providers:
|
for provider in providers:
|
||||||
@ -469,25 +582,7 @@ class CloudWatchBackend(BaseBackend):
|
|||||||
self, namespace: str, metric_data: List[Dict[str, Any]]
|
self, namespace: str, metric_data: List[Dict[str, Any]]
|
||||||
) -> None:
|
) -> None:
|
||||||
for i, metric in enumerate(metric_data):
|
for i, metric in enumerate(metric_data):
|
||||||
if metric.get("Value") == "NaN":
|
self._validate_parameters_put_metric_data(metric, i + 1)
|
||||||
raise InvalidParameterValue(
|
|
||||||
f"The value NaN for parameter MetricData.member.{i + 1}.Value is invalid."
|
|
||||||
)
|
|
||||||
if metric.get("Values.member"):
|
|
||||||
if "Value" in metric:
|
|
||||||
raise InvalidParameterValue(
|
|
||||||
f"The parameters MetricData.member.{i+1}.Value and MetricData.member.{i+1}.Values are mutually exclusive and you have specified both."
|
|
||||||
)
|
|
||||||
if metric.get("Counts.member"):
|
|
||||||
if len(metric["Counts.member"]) != len(metric["Values.member"]):
|
|
||||||
raise InvalidParameterValue(
|
|
||||||
f"The parameters MetricData.member.{i+1}.Values and MetricData.member.{i+1}.Counts must be of the same size."
|
|
||||||
)
|
|
||||||
for value in metric["Values.member"]:
|
|
||||||
if value.lower() == "nan":
|
|
||||||
raise InvalidParameterValue(
|
|
||||||
f"The value {value} for parameter MetricData.member.{i + 1}.Values is invalid."
|
|
||||||
)
|
|
||||||
|
|
||||||
for metric_member in metric_data:
|
for metric_member in metric_data:
|
||||||
# Preserve "datetime" for get_metric_statistics comparisons
|
# Preserve "datetime" for get_metric_statistics comparisons
|
||||||
@ -513,12 +608,27 @@ class CloudWatchBackend(BaseBackend):
|
|||||||
for _ in range(0, int(float(counts[i]))):
|
for _ in range(0, int(float(counts[i]))):
|
||||||
self.metric_data.append(
|
self.metric_data.append(
|
||||||
MetricDatum(
|
MetricDatum(
|
||||||
namespace,
|
namespace=namespace,
|
||||||
metric_name,
|
name=metric_name,
|
||||||
float(value),
|
value=float(value),
|
||||||
dimension,
|
dimensions=dimension,
|
||||||
timestamp,
|
timestamp=timestamp,
|
||||||
unit,
|
unit=unit,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
elif metric_member.get("StatisticValues"):
|
||||||
|
stats = metric_member["StatisticValues"]
|
||||||
|
self.metric_data.append(
|
||||||
|
MetricAggregatedDatum(
|
||||||
|
namespace=namespace,
|
||||||
|
name=metric_name,
|
||||||
|
sum_stat=float(stats["Sum"]),
|
||||||
|
min_stat=float(stats["Minimum"]),
|
||||||
|
max_stat=float(stats["Maximum"]),
|
||||||
|
sample_count=float(stats["SampleCount"]),
|
||||||
|
dimensions=dimension,
|
||||||
|
timestamp=timestamp,
|
||||||
|
unit=unit,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
@ -543,7 +653,7 @@ class CloudWatchBackend(BaseBackend):
|
|||||||
) -> List[Dict[str, Any]]:
|
) -> List[Dict[str, Any]]:
|
||||||
|
|
||||||
period_data = [
|
period_data = [
|
||||||
md for md in self.metric_data if start_time <= md.timestamp < end_time
|
md for md in self.get_all_metrics() if start_time <= md.timestamp < end_time
|
||||||
]
|
]
|
||||||
|
|
||||||
results = []
|
results = []
|
||||||
@ -583,22 +693,12 @@ class CloudWatchBackend(BaseBackend):
|
|||||||
md for md in query_period_data if md.unit == unit
|
md for md in query_period_data if md.unit == unit
|
||||||
]
|
]
|
||||||
|
|
||||||
metric_values = [m.value for m in query_period_data]
|
if len(query_period_data) > 0:
|
||||||
|
stats = Statistics([stat], period_start_time)
|
||||||
|
stats.metric_data = query_period_data
|
||||||
|
result_vals.append(stats.get_statistics_for_type(stat)) # type: ignore[arg-type]
|
||||||
|
|
||||||
if len(metric_values) > 0:
|
timestamps.append(stats.timestamp)
|
||||||
if stat == "SampleCount":
|
|
||||||
result_vals.append(len(metric_values))
|
|
||||||
elif stat == "Average":
|
|
||||||
result_vals.append(sum(metric_values) / len(metric_values))
|
|
||||||
elif stat == "Minimum":
|
|
||||||
result_vals.append(min(metric_values))
|
|
||||||
elif stat == "Maximum":
|
|
||||||
result_vals.append(max(metric_values))
|
|
||||||
elif stat == "Sum":
|
|
||||||
result_vals.append(sum(metric_values))
|
|
||||||
timestamps.append(
|
|
||||||
iso_8601_datetime_without_milliseconds(period_start_time) # type: ignore[arg-type]
|
|
||||||
)
|
|
||||||
period_start_time += delta
|
period_start_time += delta
|
||||||
if scan_by == "TimestampDescending" and len(timestamps) > 0:
|
if scan_by == "TimestampDescending" and len(timestamps) > 0:
|
||||||
timestamps.reverse()
|
timestamps.reverse()
|
||||||
@ -663,18 +763,18 @@ class CloudWatchBackend(BaseBackend):
|
|||||||
while idx < len(filtered_data) and filtered_data[idx].timestamp < (
|
while idx < len(filtered_data) and filtered_data[idx].timestamp < (
|
||||||
dt + period_delta
|
dt + period_delta
|
||||||
):
|
):
|
||||||
s.values.append(filtered_data[idx].value)
|
s.metric_data.append(filtered_data[idx])
|
||||||
s.unit = filtered_data[idx].unit
|
s.unit = filtered_data[idx].unit
|
||||||
idx += 1
|
idx += 1
|
||||||
|
|
||||||
if not s.values:
|
if not s.metric_data:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
data.append(s)
|
data.append(s)
|
||||||
|
|
||||||
return data
|
return data
|
||||||
|
|
||||||
def get_all_metrics(self) -> List[MetricDatum]:
|
def get_all_metrics(self) -> List[MetricDatumBase]:
|
||||||
return self.metric_data + self.aws_metric_data
|
return self.metric_data + self.aws_metric_data
|
||||||
|
|
||||||
def put_dashboard(self, name: str, body: str) -> None:
|
def put_dashboard(self, name: str, body: str) -> None:
|
||||||
@ -730,7 +830,7 @@ class CloudWatchBackend(BaseBackend):
|
|||||||
namespace: str,
|
namespace: str,
|
||||||
metric_name: str,
|
metric_name: str,
|
||||||
dimensions: List[Dict[str, str]],
|
dimensions: List[Dict[str, str]],
|
||||||
) -> Tuple[Optional[str], List[MetricDatum]]:
|
) -> Tuple[Optional[str], List[MetricDatumBase]]:
|
||||||
if next_token:
|
if next_token:
|
||||||
if next_token not in self.paged_metric_data:
|
if next_token not in self.paged_metric_data:
|
||||||
raise InvalidParameterValue("Request parameter NextToken is invalid")
|
raise InvalidParameterValue("Request parameter NextToken is invalid")
|
||||||
@ -744,9 +844,9 @@ class CloudWatchBackend(BaseBackend):
|
|||||||
|
|
||||||
def get_filtered_metrics(
|
def get_filtered_metrics(
|
||||||
self, metric_name: str, namespace: str, dimensions: List[Dict[str, str]]
|
self, metric_name: str, namespace: str, dimensions: List[Dict[str, str]]
|
||||||
) -> List[MetricDatum]:
|
) -> List[MetricDatumBase]:
|
||||||
metrics = self.get_all_metrics()
|
metrics = self.get_all_metrics()
|
||||||
new_metrics: List[MetricDatum] = []
|
new_metrics: List[MetricDatumBase] = []
|
||||||
for md in metrics:
|
for md in metrics:
|
||||||
if md.filter(
|
if md.filter(
|
||||||
namespace=namespace,
|
namespace=namespace,
|
||||||
@ -776,8 +876,8 @@ class CloudWatchBackend(BaseBackend):
|
|||||||
self.tagger.untag_resource_using_names(arn, tag_keys)
|
self.tagger.untag_resource_using_names(arn, tag_keys)
|
||||||
|
|
||||||
def _get_paginated(
|
def _get_paginated(
|
||||||
self, metrics: List[MetricDatum]
|
self, metrics: List[MetricDatumBase]
|
||||||
) -> Tuple[Optional[str], List[MetricDatum]]:
|
) -> Tuple[Optional[str], List[MetricDatumBase]]:
|
||||||
if len(metrics) > 500:
|
if len(metrics) > 500:
|
||||||
next_token = str(mock_random.uuid4())
|
next_token = str(mock_random.uuid4())
|
||||||
self.paged_metric_data[next_token] = metrics[500:]
|
self.paged_metric_data[next_token] = metrics[500:]
|
||||||
@ -802,5 +902,53 @@ class CloudWatchBackend(BaseBackend):
|
|||||||
|
|
||||||
return dimensions
|
return dimensions
|
||||||
|
|
||||||
|
def _validate_parameters_put_metric_data(
|
||||||
|
self, metric: Dict[str, Any], query_num: int
|
||||||
|
) -> None:
|
||||||
|
"""Runs some basic validation of the Metric Query
|
||||||
|
|
||||||
|
:param metric: represents one metric query
|
||||||
|
:param query_num: the query number (starting from 1)
|
||||||
|
:returns: nothing if the validation passes, else an exception is thrown
|
||||||
|
:raises: InvalidParameterValue
|
||||||
|
:raises: InvalidParameterCombination
|
||||||
|
"""
|
||||||
|
# basic validation of input
|
||||||
|
if metric.get("Value") == "NaN":
|
||||||
|
# single value
|
||||||
|
raise InvalidParameterValue(
|
||||||
|
f"The value NaN for parameter MetricData.member.{query_num}.Value is invalid."
|
||||||
|
)
|
||||||
|
if metric.get("Values.member"):
|
||||||
|
# list of values
|
||||||
|
if "Value" in metric:
|
||||||
|
raise InvalidParameterValue(
|
||||||
|
f"The parameters MetricData.member.{query_num}.Value and MetricData.member.{query_num}.Values are mutually exclusive and you have specified both."
|
||||||
|
)
|
||||||
|
if metric.get("Counts.member"):
|
||||||
|
if len(metric["Counts.member"]) != len(metric["Values.member"]):
|
||||||
|
raise InvalidParameterValue(
|
||||||
|
f"The parameters MetricData.member.{query_num}.Values and MetricData.member.{query_num}.Counts must be of the same size."
|
||||||
|
)
|
||||||
|
for value in metric["Values.member"]:
|
||||||
|
if value.lower() == "nan":
|
||||||
|
raise InvalidParameterValue(
|
||||||
|
f"The value {value} for parameter MetricData.member.{query_num}.Values is invalid."
|
||||||
|
)
|
||||||
|
if metric.get("StatisticValues"):
|
||||||
|
if metric.get("Value"):
|
||||||
|
raise InvalidParameterCombination(
|
||||||
|
f"The parameters MetricData.member.{query_num}.Value and MetricData.member.{query_num}.StatisticValues are mutually exclusive and you have specified both."
|
||||||
|
)
|
||||||
|
|
||||||
|
# aggregated (statistic) for values, must contain sum, maximum, minimum and sample count
|
||||||
|
statistic_values = metric["StatisticValues"]
|
||||||
|
expected = ["Sum", "Maximum", "Minimum", "SampleCount"]
|
||||||
|
for stat in expected:
|
||||||
|
if stat not in statistic_values:
|
||||||
|
raise InvalidParameterValue(
|
||||||
|
f'Missing required parameter in MetricData[{query_num}].StatisticValues: "{stat}"'
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
cloudwatch_backends = BackendDict(CloudWatchBackend, "cloudwatch")
|
cloudwatch_backends = BackendDict(CloudWatchBackend, "cloudwatch")
|
||||||
|
@ -160,6 +160,29 @@ def test_put_metric_data_values_without_counts():
|
|||||||
datapoint["Maximum"].should.equal(23.45)
|
datapoint["Maximum"].should.equal(23.45)
|
||||||
|
|
||||||
|
|
||||||
|
@mock_cloudwatch
|
||||||
|
def test_put_metric_data_value_and_statistics():
|
||||||
|
conn = boto3.client("cloudwatch", region_name="us-east-1")
|
||||||
|
with pytest.raises(ClientError) as exc:
|
||||||
|
conn.put_metric_data(
|
||||||
|
Namespace="statistics",
|
||||||
|
MetricData=[
|
||||||
|
dict(
|
||||||
|
MetricName="stats",
|
||||||
|
Value=123.0,
|
||||||
|
StatisticValues=dict(
|
||||||
|
Sum=10.0, Maximum=9.0, Minimum=1.0, SampleCount=2
|
||||||
|
),
|
||||||
|
)
|
||||||
|
],
|
||||||
|
)
|
||||||
|
err = exc.value.response["Error"]
|
||||||
|
err["Code"].should.equal("InvalidParameterCombination")
|
||||||
|
err["Message"].should.equal(
|
||||||
|
"The parameters MetricData.member.1.Value and MetricData.member.1.StatisticValues are mutually exclusive and you have specified both."
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@mock_cloudwatch
|
@mock_cloudwatch
|
||||||
def test_put_metric_data_with_statistics():
|
def test_put_metric_data_with_statistics():
|
||||||
conn = boto3.client("cloudwatch", region_name="us-east-1")
|
conn = boto3.client("cloudwatch", region_name="us-east-1")
|
||||||
@ -173,7 +196,7 @@ def test_put_metric_data_with_statistics():
|
|||||||
Timestamp=utc_now,
|
Timestamp=utc_now,
|
||||||
# no Value to test https://github.com/spulec/moto/issues/1615
|
# no Value to test https://github.com/spulec/moto/issues/1615
|
||||||
StatisticValues=dict(
|
StatisticValues=dict(
|
||||||
SampleCount=123.0, Sum=123.0, Minimum=123.0, Maximum=123.0
|
SampleCount=3.0, Sum=123.0, Maximum=100.0, Minimum=12.0
|
||||||
),
|
),
|
||||||
Unit="Milliseconds",
|
Unit="Milliseconds",
|
||||||
StorageResolution=123,
|
StorageResolution=123,
|
||||||
@ -185,7 +208,53 @@ def test_put_metric_data_with_statistics():
|
|||||||
metrics.should.contain(
|
metrics.should.contain(
|
||||||
{"Namespace": "tester", "MetricName": "statmetric", "Dimensions": []}
|
{"Namespace": "tester", "MetricName": "statmetric", "Dimensions": []}
|
||||||
)
|
)
|
||||||
# TODO: test statistics - https://github.com/spulec/moto/issues/1615
|
|
||||||
|
stats = conn.get_metric_statistics(
|
||||||
|
Namespace="tester",
|
||||||
|
MetricName="statmetric",
|
||||||
|
StartTime=utc_now - timedelta(seconds=60),
|
||||||
|
EndTime=utc_now + timedelta(seconds=60),
|
||||||
|
Period=60,
|
||||||
|
Statistics=["SampleCount", "Sum", "Maximum", "Minimum", "Average"],
|
||||||
|
)
|
||||||
|
|
||||||
|
stats["Datapoints"].should.have.length_of(1)
|
||||||
|
datapoint = stats["Datapoints"][0]
|
||||||
|
datapoint["SampleCount"].should.equal(3.0)
|
||||||
|
datapoint["Sum"].should.equal(123.0)
|
||||||
|
datapoint["Minimum"].should.equal(12.0)
|
||||||
|
datapoint["Maximum"].should.equal(100.0)
|
||||||
|
datapoint["Average"].should.equal(41.0)
|
||||||
|
|
||||||
|
# add single value
|
||||||
|
conn.put_metric_data(
|
||||||
|
Namespace="tester",
|
||||||
|
MetricData=[
|
||||||
|
dict(
|
||||||
|
MetricName="statmetric",
|
||||||
|
Timestamp=utc_now,
|
||||||
|
Value=101.0,
|
||||||
|
Unit="Milliseconds",
|
||||||
|
)
|
||||||
|
],
|
||||||
|
)
|
||||||
|
# check stats again - should have changed, because there is one more datapoint
|
||||||
|
stats = conn.get_metric_statistics(
|
||||||
|
Namespace="tester",
|
||||||
|
MetricName="statmetric",
|
||||||
|
StartTime=utc_now - timedelta(seconds=60),
|
||||||
|
EndTime=utc_now + timedelta(seconds=60),
|
||||||
|
Period=60,
|
||||||
|
Statistics=["SampleCount", "Sum", "Maximum", "Minimum", "Average"],
|
||||||
|
)
|
||||||
|
|
||||||
|
stats["Datapoints"].should.have.length_of(1)
|
||||||
|
datapoint = stats["Datapoints"][0]
|
||||||
|
datapoint["SampleCount"].should.equal(4.0)
|
||||||
|
datapoint["Sum"].should.equal(224.0)
|
||||||
|
datapoint["Minimum"].should.equal(12.0)
|
||||||
|
datapoint["Maximum"].should.equal(101.0)
|
||||||
|
datapoint["Average"].should.equal(56.0)
|
||||||
|
|
||||||
|
|
||||||
@mock_cloudwatch
|
@mock_cloudwatch
|
||||||
|
Loading…
Reference in New Issue
Block a user