CloudWatch: support statistic-values in put-metric-data (#5793)

This commit is contained in:
steffyP 2022-12-21 20:07:41 +01:00 committed by GitHub
parent bdef72d481
commit fbc3710f69
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 285 additions and 68 deletions

View File

@ -1,5 +1,4 @@
import json import json
import statistics
from moto.core import BaseBackend, BackendDict, BaseModel, CloudWatchMetricProvider from moto.core import BaseBackend, BackendDict, BaseModel, CloudWatchMetricProvider
from moto.core.utils import ( from moto.core.utils import (
@ -16,6 +15,7 @@ from .exceptions import (
ValidationError, ValidationError,
InvalidParameterValue, InvalidParameterValue,
ResourceNotFoundException, ResourceNotFoundException,
InvalidParameterCombination,
) )
from .utils import make_arn_for_dashboard, make_arn_for_alarm from .utils import make_arn_for_dashboard, make_arn_for_alarm
from dateutil import parser from dateutil import parser
@ -211,19 +211,21 @@ def are_dimensions_same(
return True return True
class MetricDatum(BaseModel): class MetricDatumBase(BaseModel):
"""
Base class for Metrics Datum (represents value or statistics set by put-metric-data)
"""
def __init__( def __init__(
self, self,
namespace: str, namespace: str,
name: str, name: str,
value: float,
dimensions: List[Dict[str, str]], dimensions: List[Dict[str, str]],
timestamp: datetime, timestamp: datetime,
unit: Any = None, unit: Any = None,
): ):
self.namespace = namespace self.namespace = namespace
self.name = name self.name = name
self.value = value
self.timestamp = timestamp or datetime.utcnow().replace(tzinfo=tzutc()) self.timestamp = timestamp or datetime.utcnow().replace(tzinfo=tzutc())
self.dimensions = [ self.dimensions = [
Dimension(dimension["Name"], dimension["Value"]) for dimension in dimensions Dimension(dimension["Name"], dimension["Value"]) for dimension in dimensions
@ -235,7 +237,7 @@ class MetricDatum(BaseModel):
namespace: Optional[str], namespace: Optional[str],
name: Optional[str], name: Optional[str],
dimensions: List[Dict[str, str]], dimensions: List[Dict[str, str]],
already_present_metrics: Optional[List["MetricDatum"]] = None, already_present_metrics: Optional[List["MetricDatumBase"]] = None,
) -> bool: ) -> bool:
if namespace and namespace != self.namespace: if namespace and namespace != self.namespace:
return False return False
@ -261,6 +263,48 @@ class MetricDatum(BaseModel):
return True return True
class MetricDatum(MetricDatumBase):
"""
Single Metric value, represents the "value" (or a single value from the list "values") used in put-metric-data
"""
def __init__(
self,
namespace: str,
name: str,
value: float,
dimensions: List[Dict[str, str]],
timestamp: datetime,
unit: Any = None,
):
super().__init__(namespace, name, dimensions, timestamp, unit)
self.value = value
class MetricAggregatedDatum(MetricDatumBase):
"""
Metric Statistics, represents "statistics-values" used in put-metric-data
"""
def __init__(
self,
namespace: str,
name: str,
min_stat: float,
max_stat: float,
sample_count: float,
sum_stat: float,
dimensions: List[Dict[str, str]],
timestamp: datetime,
unit: Any = None,
):
super().__init__(namespace, name, dimensions, timestamp, unit)
self.min = min_stat
self.max = max_stat
self.sample_count = sample_count
self.sum = sum_stat
class Dashboard(BaseModel): class Dashboard(BaseModel):
def __init__(self, account_id: str, name: str, body: str): def __init__(self, account_id: str, name: str, body: str):
# Guaranteed to be unique for now as the name is also the key of a dictionary where they are stored # Guaranteed to be unique for now as the name is also the key of a dictionary where they are stored
@ -285,46 +329,115 @@ class Dashboard(BaseModel):
class Statistics: class Statistics:
def __init__(self, stats: List[str], dt: datetime): """
self.timestamp = iso_8601_datetime_without_milliseconds(dt) Helper class to calculate statics for a list of metrics (MetricDatum, or MetricAggregatedDatum)
self.values: List[float] = [] """
def __init__(self, stats: List[str], dt: datetime, unit: Optional[str] = None):
self.timestamp: str = (
iso_8601_datetime_without_milliseconds(dt) or self.timestamp_iso_8601_now()
)
self.metric_data: List[MetricDatumBase] = []
self.stats = stats self.stats = stats
self.unit = None self.unit = unit
def get_statistics_for_type(self, stat: str) -> Optional[SupportsFloat]:
"""Calculates the statistic for the metric_data provided
:param stat: the statistic that should be returned, case-sensitive (Sum, Average, Minium, Maximum, SampleCount)
:return: the statistic of the current 'metric_data' in this class, or 0
"""
if stat == "Sum":
return self.sum
if stat == "Average":
return self.average
if stat == "Minimum":
return self.minimum
if stat == "Maximum":
return self.maximum
if stat == "SampleCount":
return self.sample_count
return None
@property
def metric_single_values_list(self) -> List[float]:
"""
:return: list of all values for the MetricDatum instances of the metric_data list
"""
return [m.value for m in self.metric_data or [] if isinstance(m, MetricDatum)]
@property
def metric_aggregated_list(self) -> List[MetricAggregatedDatum]:
"""
:return: list of all MetricAggregatedDatum instances from the metric_data list
"""
return [
s for s in self.metric_data or [] if isinstance(s, MetricAggregatedDatum)
]
@property @property
def sample_count(self) -> Optional[SupportsFloat]: def sample_count(self) -> Optional[SupportsFloat]:
if "SampleCount" not in self.stats: if "SampleCount" not in self.stats:
return None return None
return len(self.values) return self.calc_sample_count()
@property @property
def sum(self) -> Optional[SupportsFloat]: def sum(self) -> Optional[SupportsFloat]:
if "Sum" not in self.stats: if "Sum" not in self.stats:
return None return None
return sum(self.values) return self.calc_sum()
@property @property
def minimum(self) -> Optional[SupportsFloat]: def minimum(self) -> Optional[SupportsFloat]:
if "Minimum" not in self.stats: if "Minimum" not in self.stats:
return None return None
if not self.metric_single_values_list and not self.metric_aggregated_list:
return None
return min(self.values) metrics = self.metric_single_values_list + [
s.min for s in self.metric_aggregated_list
]
return min(metrics)
@property @property
def maximum(self) -> Optional[SupportsFloat]: def maximum(self) -> Optional[SupportsFloat]:
if "Maximum" not in self.stats: if "Maximum" not in self.stats:
return None return None
return max(self.values) if not self.metric_single_values_list and not self.metric_aggregated_list:
return None
metrics = self.metric_single_values_list + [
s.max for s in self.metric_aggregated_list
]
return max(metrics)
@property @property
def average(self) -> Optional[SupportsFloat]: def average(self) -> Optional[SupportsFloat]:
if "Average" not in self.stats: if "Average" not in self.stats:
return None return None
return statistics.mean(self.values) sample_count = self.calc_sample_count()
if not sample_count:
return None
return self.calc_sum() / sample_count
def calc_sample_count(self) -> float:
return len(self.metric_single_values_list) + sum(
[s.sample_count for s in self.metric_aggregated_list]
)
def calc_sum(self) -> float:
return sum(self.metric_single_values_list) + sum(
[s.sum for s in self.metric_aggregated_list]
)
def timestamp_iso_8601_now(self) -> str:
return iso_8601_datetime_without_milliseconds(datetime.now()) # type: ignore[return-value]
class CloudWatchBackend(BaseBackend): class CloudWatchBackend(BaseBackend):
@ -332,8 +445,8 @@ class CloudWatchBackend(BaseBackend):
super().__init__(region_name, account_id) super().__init__(region_name, account_id)
self.alarms: Dict[str, FakeAlarm] = {} self.alarms: Dict[str, FakeAlarm] = {}
self.dashboards: Dict[str, Dashboard] = {} self.dashboards: Dict[str, Dashboard] = {}
self.metric_data: List[MetricDatum] = [] self.metric_data: List[MetricDatumBase] = []
self.paged_metric_data: Dict[str, List[MetricDatum]] = {} self.paged_metric_data: Dict[str, List[MetricDatumBase]] = {}
self.tagger = TaggingService() self.tagger = TaggingService()
@staticmethod @staticmethod
@ -348,7 +461,7 @@ class CloudWatchBackend(BaseBackend):
@property @property
# Retrieve a list of all OOTB metrics that are provided by metrics providers # Retrieve a list of all OOTB metrics that are provided by metrics providers
# Computed on the fly # Computed on the fly
def aws_metric_data(self) -> List[MetricDatum]: def aws_metric_data(self) -> List[MetricDatumBase]:
providers = CloudWatchMetricProvider.__subclasses__() providers = CloudWatchMetricProvider.__subclasses__()
md = [] md = []
for provider in providers: for provider in providers:
@ -469,25 +582,7 @@ class CloudWatchBackend(BaseBackend):
self, namespace: str, metric_data: List[Dict[str, Any]] self, namespace: str, metric_data: List[Dict[str, Any]]
) -> None: ) -> None:
for i, metric in enumerate(metric_data): for i, metric in enumerate(metric_data):
if metric.get("Value") == "NaN": self._validate_parameters_put_metric_data(metric, i + 1)
raise InvalidParameterValue(
f"The value NaN for parameter MetricData.member.{i + 1}.Value is invalid."
)
if metric.get("Values.member"):
if "Value" in metric:
raise InvalidParameterValue(
f"The parameters MetricData.member.{i+1}.Value and MetricData.member.{i+1}.Values are mutually exclusive and you have specified both."
)
if metric.get("Counts.member"):
if len(metric["Counts.member"]) != len(metric["Values.member"]):
raise InvalidParameterValue(
f"The parameters MetricData.member.{i+1}.Values and MetricData.member.{i+1}.Counts must be of the same size."
)
for value in metric["Values.member"]:
if value.lower() == "nan":
raise InvalidParameterValue(
f"The value {value} for parameter MetricData.member.{i + 1}.Values is invalid."
)
for metric_member in metric_data: for metric_member in metric_data:
# Preserve "datetime" for get_metric_statistics comparisons # Preserve "datetime" for get_metric_statistics comparisons
@ -513,12 +608,27 @@ class CloudWatchBackend(BaseBackend):
for _ in range(0, int(float(counts[i]))): for _ in range(0, int(float(counts[i]))):
self.metric_data.append( self.metric_data.append(
MetricDatum( MetricDatum(
namespace, namespace=namespace,
metric_name, name=metric_name,
float(value), value=float(value),
dimension, dimensions=dimension,
timestamp, timestamp=timestamp,
unit, unit=unit,
)
)
elif metric_member.get("StatisticValues"):
stats = metric_member["StatisticValues"]
self.metric_data.append(
MetricAggregatedDatum(
namespace=namespace,
name=metric_name,
sum_stat=float(stats["Sum"]),
min_stat=float(stats["Minimum"]),
max_stat=float(stats["Maximum"]),
sample_count=float(stats["SampleCount"]),
dimensions=dimension,
timestamp=timestamp,
unit=unit,
) )
) )
else: else:
@ -543,7 +653,7 @@ class CloudWatchBackend(BaseBackend):
) -> List[Dict[str, Any]]: ) -> List[Dict[str, Any]]:
period_data = [ period_data = [
md for md in self.metric_data if start_time <= md.timestamp < end_time md for md in self.get_all_metrics() if start_time <= md.timestamp < end_time
] ]
results = [] results = []
@ -583,22 +693,12 @@ class CloudWatchBackend(BaseBackend):
md for md in query_period_data if md.unit == unit md for md in query_period_data if md.unit == unit
] ]
metric_values = [m.value for m in query_period_data] if len(query_period_data) > 0:
stats = Statistics([stat], period_start_time)
stats.metric_data = query_period_data
result_vals.append(stats.get_statistics_for_type(stat)) # type: ignore[arg-type]
if len(metric_values) > 0: timestamps.append(stats.timestamp)
if stat == "SampleCount":
result_vals.append(len(metric_values))
elif stat == "Average":
result_vals.append(sum(metric_values) / len(metric_values))
elif stat == "Minimum":
result_vals.append(min(metric_values))
elif stat == "Maximum":
result_vals.append(max(metric_values))
elif stat == "Sum":
result_vals.append(sum(metric_values))
timestamps.append(
iso_8601_datetime_without_milliseconds(period_start_time) # type: ignore[arg-type]
)
period_start_time += delta period_start_time += delta
if scan_by == "TimestampDescending" and len(timestamps) > 0: if scan_by == "TimestampDescending" and len(timestamps) > 0:
timestamps.reverse() timestamps.reverse()
@ -663,18 +763,18 @@ class CloudWatchBackend(BaseBackend):
while idx < len(filtered_data) and filtered_data[idx].timestamp < ( while idx < len(filtered_data) and filtered_data[idx].timestamp < (
dt + period_delta dt + period_delta
): ):
s.values.append(filtered_data[idx].value) s.metric_data.append(filtered_data[idx])
s.unit = filtered_data[idx].unit s.unit = filtered_data[idx].unit
idx += 1 idx += 1
if not s.values: if not s.metric_data:
continue continue
data.append(s) data.append(s)
return data return data
def get_all_metrics(self) -> List[MetricDatum]: def get_all_metrics(self) -> List[MetricDatumBase]:
return self.metric_data + self.aws_metric_data return self.metric_data + self.aws_metric_data
def put_dashboard(self, name: str, body: str) -> None: def put_dashboard(self, name: str, body: str) -> None:
@ -730,7 +830,7 @@ class CloudWatchBackend(BaseBackend):
namespace: str, namespace: str,
metric_name: str, metric_name: str,
dimensions: List[Dict[str, str]], dimensions: List[Dict[str, str]],
) -> Tuple[Optional[str], List[MetricDatum]]: ) -> Tuple[Optional[str], List[MetricDatumBase]]:
if next_token: if next_token:
if next_token not in self.paged_metric_data: if next_token not in self.paged_metric_data:
raise InvalidParameterValue("Request parameter NextToken is invalid") raise InvalidParameterValue("Request parameter NextToken is invalid")
@ -744,9 +844,9 @@ class CloudWatchBackend(BaseBackend):
def get_filtered_metrics( def get_filtered_metrics(
self, metric_name: str, namespace: str, dimensions: List[Dict[str, str]] self, metric_name: str, namespace: str, dimensions: List[Dict[str, str]]
) -> List[MetricDatum]: ) -> List[MetricDatumBase]:
metrics = self.get_all_metrics() metrics = self.get_all_metrics()
new_metrics: List[MetricDatum] = [] new_metrics: List[MetricDatumBase] = []
for md in metrics: for md in metrics:
if md.filter( if md.filter(
namespace=namespace, namespace=namespace,
@ -776,8 +876,8 @@ class CloudWatchBackend(BaseBackend):
self.tagger.untag_resource_using_names(arn, tag_keys) self.tagger.untag_resource_using_names(arn, tag_keys)
def _get_paginated( def _get_paginated(
self, metrics: List[MetricDatum] self, metrics: List[MetricDatumBase]
) -> Tuple[Optional[str], List[MetricDatum]]: ) -> Tuple[Optional[str], List[MetricDatumBase]]:
if len(metrics) > 500: if len(metrics) > 500:
next_token = str(mock_random.uuid4()) next_token = str(mock_random.uuid4())
self.paged_metric_data[next_token] = metrics[500:] self.paged_metric_data[next_token] = metrics[500:]
@ -802,5 +902,53 @@ class CloudWatchBackend(BaseBackend):
return dimensions return dimensions
def _validate_parameters_put_metric_data(
self, metric: Dict[str, Any], query_num: int
) -> None:
"""Runs some basic validation of the Metric Query
:param metric: represents one metric query
:param query_num: the query number (starting from 1)
:returns: nothing if the validation passes, else an exception is thrown
:raises: InvalidParameterValue
:raises: InvalidParameterCombination
"""
# basic validation of input
if metric.get("Value") == "NaN":
# single value
raise InvalidParameterValue(
f"The value NaN for parameter MetricData.member.{query_num}.Value is invalid."
)
if metric.get("Values.member"):
# list of values
if "Value" in metric:
raise InvalidParameterValue(
f"The parameters MetricData.member.{query_num}.Value and MetricData.member.{query_num}.Values are mutually exclusive and you have specified both."
)
if metric.get("Counts.member"):
if len(metric["Counts.member"]) != len(metric["Values.member"]):
raise InvalidParameterValue(
f"The parameters MetricData.member.{query_num}.Values and MetricData.member.{query_num}.Counts must be of the same size."
)
for value in metric["Values.member"]:
if value.lower() == "nan":
raise InvalidParameterValue(
f"The value {value} for parameter MetricData.member.{query_num}.Values is invalid."
)
if metric.get("StatisticValues"):
if metric.get("Value"):
raise InvalidParameterCombination(
f"The parameters MetricData.member.{query_num}.Value and MetricData.member.{query_num}.StatisticValues are mutually exclusive and you have specified both."
)
# aggregated (statistic) for values, must contain sum, maximum, minimum and sample count
statistic_values = metric["StatisticValues"]
expected = ["Sum", "Maximum", "Minimum", "SampleCount"]
for stat in expected:
if stat not in statistic_values:
raise InvalidParameterValue(
f'Missing required parameter in MetricData[{query_num}].StatisticValues: "{stat}"'
)
cloudwatch_backends = BackendDict(CloudWatchBackend, "cloudwatch") cloudwatch_backends = BackendDict(CloudWatchBackend, "cloudwatch")

View File

@ -160,6 +160,29 @@ def test_put_metric_data_values_without_counts():
datapoint["Maximum"].should.equal(23.45) datapoint["Maximum"].should.equal(23.45)
@mock_cloudwatch
def test_put_metric_data_value_and_statistics():
conn = boto3.client("cloudwatch", region_name="us-east-1")
with pytest.raises(ClientError) as exc:
conn.put_metric_data(
Namespace="statistics",
MetricData=[
dict(
MetricName="stats",
Value=123.0,
StatisticValues=dict(
Sum=10.0, Maximum=9.0, Minimum=1.0, SampleCount=2
),
)
],
)
err = exc.value.response["Error"]
err["Code"].should.equal("InvalidParameterCombination")
err["Message"].should.equal(
"The parameters MetricData.member.1.Value and MetricData.member.1.StatisticValues are mutually exclusive and you have specified both."
)
@mock_cloudwatch @mock_cloudwatch
def test_put_metric_data_with_statistics(): def test_put_metric_data_with_statistics():
conn = boto3.client("cloudwatch", region_name="us-east-1") conn = boto3.client("cloudwatch", region_name="us-east-1")
@ -173,7 +196,7 @@ def test_put_metric_data_with_statistics():
Timestamp=utc_now, Timestamp=utc_now,
# no Value to test https://github.com/spulec/moto/issues/1615 # no Value to test https://github.com/spulec/moto/issues/1615
StatisticValues=dict( StatisticValues=dict(
SampleCount=123.0, Sum=123.0, Minimum=123.0, Maximum=123.0 SampleCount=3.0, Sum=123.0, Maximum=100.0, Minimum=12.0
), ),
Unit="Milliseconds", Unit="Milliseconds",
StorageResolution=123, StorageResolution=123,
@ -185,7 +208,53 @@ def test_put_metric_data_with_statistics():
metrics.should.contain( metrics.should.contain(
{"Namespace": "tester", "MetricName": "statmetric", "Dimensions": []} {"Namespace": "tester", "MetricName": "statmetric", "Dimensions": []}
) )
# TODO: test statistics - https://github.com/spulec/moto/issues/1615
stats = conn.get_metric_statistics(
Namespace="tester",
MetricName="statmetric",
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
Period=60,
Statistics=["SampleCount", "Sum", "Maximum", "Minimum", "Average"],
)
stats["Datapoints"].should.have.length_of(1)
datapoint = stats["Datapoints"][0]
datapoint["SampleCount"].should.equal(3.0)
datapoint["Sum"].should.equal(123.0)
datapoint["Minimum"].should.equal(12.0)
datapoint["Maximum"].should.equal(100.0)
datapoint["Average"].should.equal(41.0)
# add single value
conn.put_metric_data(
Namespace="tester",
MetricData=[
dict(
MetricName="statmetric",
Timestamp=utc_now,
Value=101.0,
Unit="Milliseconds",
)
],
)
# check stats again - should have changed, because there is one more datapoint
stats = conn.get_metric_statistics(
Namespace="tester",
MetricName="statmetric",
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
Period=60,
Statistics=["SampleCount", "Sum", "Maximum", "Minimum", "Average"],
)
stats["Datapoints"].should.have.length_of(1)
datapoint = stats["Datapoints"][0]
datapoint["SampleCount"].should.equal(4.0)
datapoint["Sum"].should.equal(224.0)
datapoint["Minimum"].should.equal(12.0)
datapoint["Maximum"].should.equal(101.0)
datapoint["Average"].should.equal(56.0)
@mock_cloudwatch @mock_cloudwatch