import boto3 import pytest import sure # noqa # pylint: disable=unused-import from botocore.exceptions import ClientError from moto import mock_cloudformation, mock_sagemaker from moto.core import DEFAULT_ACCOUNT_ID as ACCOUNT_ID from .cloudformation_test_configs import ( NotebookInstanceTestConfig, NotebookInstanceLifecycleConfigTestConfig, ModelTestConfig, EndpointConfigTestConfig, EndpointTestConfig, ) def _get_stack_outputs(cf_client, stack_name): """Returns the outputs for the first entry in describe_stacks.""" stack_description = cf_client.describe_stacks(StackName=stack_name)["Stacks"][0] return { output["OutputKey"]: output["OutputValue"] for output in stack_description["Outputs"] } @mock_cloudformation @mock_sagemaker @pytest.mark.parametrize( "test_config", [ NotebookInstanceTestConfig(), NotebookInstanceLifecycleConfigTestConfig(), ModelTestConfig(), EndpointConfigTestConfig(), EndpointTestConfig(), ], ) def test_sagemaker_cloudformation_create(test_config): cf = boto3.client("cloudformation", region_name="us-east-1") sm = boto3.client("sagemaker", region_name="us-east-1") # Utilize test configuration to set-up any mock SageMaker resources test_config.run_setup_procedure(sm) stack_name = f"{test_config.resource_name}_stack" cf.create_stack( StackName=stack_name, TemplateBody=test_config.get_cloudformation_template(include_outputs=False), ) provisioned_resource = cf.list_stack_resources(StackName=stack_name)[ "StackResourceSummaries" ][0] provisioned_resource["LogicalResourceId"].should.equal(test_config.resource_name) len(provisioned_resource["PhysicalResourceId"]).should.be.greater_than(0) @mock_cloudformation @mock_sagemaker @pytest.mark.parametrize( "test_config", [ NotebookInstanceTestConfig(), NotebookInstanceLifecycleConfigTestConfig(), ModelTestConfig(), EndpointConfigTestConfig(), EndpointTestConfig(), ], ) def test_sagemaker_cloudformation_get_attr(test_config): cf = boto3.client("cloudformation", region_name="us-east-1") sm = boto3.client("sagemaker", region_name="us-east-1") # Utilize test configuration to set-up any mock SageMaker resources test_config.run_setup_procedure(sm) # Create stack and get description for output values stack_name = f"{test_config.resource_name}_stack" cf.create_stack( StackName=stack_name, TemplateBody=test_config.get_cloudformation_template() ) outputs = _get_stack_outputs(cf, stack_name) # Using the describe function, ensure output ARN matches resource ARN resource_description = getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: outputs["Name"]} ) outputs["Arn"].should.equal(resource_description[test_config.arn_parameter]) @mock_cloudformation @mock_sagemaker @pytest.mark.parametrize( "test_config,error_message", [ (NotebookInstanceTestConfig(), "RecordNotFound"), ( NotebookInstanceLifecycleConfigTestConfig(), "Notebook Instance Lifecycle Config does not exist", ), (ModelTestConfig(), "Could not find model"), (EndpointConfigTestConfig(), "Could not find endpoint configuration"), (EndpointTestConfig(), "Could not find endpoint"), ], ) def test_sagemaker_cloudformation_notebook_instance_delete(test_config, error_message): cf = boto3.client("cloudformation", region_name="us-east-1") sm = boto3.client("sagemaker", region_name="us-east-1") # Utilize test configuration to set-up any mock SageMaker resources test_config.run_setup_procedure(sm) # Create stack and verify existence stack_name = f"{test_config.resource_name}_stack" cf.create_stack( StackName=stack_name, TemplateBody=test_config.get_cloudformation_template() ) outputs = _get_stack_outputs(cf, stack_name) resource_description = getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: outputs["Name"]} ) outputs["Arn"].should.equal(resource_description[test_config.arn_parameter]) # Delete the stack and verify resource has also been deleted cf.delete_stack(StackName=stack_name) with pytest.raises(ClientError) as ce: getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: outputs["Name"]} ) ce.value.response["Error"]["Message"].should.contain(error_message) @mock_cloudformation @mock_sagemaker def test_sagemaker_cloudformation_notebook_instance_update(): cf = boto3.client("cloudformation", region_name="us-east-1") sm = boto3.client("sagemaker", region_name="us-east-1") test_config = NotebookInstanceTestConfig() # Set up template for stack with two different instance types stack_name = f"{test_config.resource_name}_stack" initial_instance_type = "ml.c4.xlarge" updated_instance_type = "ml.c4.4xlarge" initial_template_json = test_config.get_cloudformation_template( instance_type=initial_instance_type ) updated_template_json = test_config.get_cloudformation_template( instance_type=updated_instance_type ) # Create stack with initial template and check attributes cf.create_stack(StackName=stack_name, TemplateBody=initial_template_json) outputs = _get_stack_outputs(cf, stack_name) initial_notebook_name = outputs["Name"] resource_description = getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: initial_notebook_name} ) initial_instance_type.should.equal(resource_description["InstanceType"]) # Update stack and check attributes cf.update_stack(StackName=stack_name, TemplateBody=updated_template_json) outputs = _get_stack_outputs(cf, stack_name) updated_notebook_name = outputs["Name"] updated_notebook_name.should.equal(initial_notebook_name) resource_description = getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: updated_notebook_name} ) updated_instance_type.should.equal(resource_description["InstanceType"]) @mock_cloudformation @mock_sagemaker def test_sagemaker_cloudformation_notebook_instance_lifecycle_config_update(): cf = boto3.client("cloudformation", region_name="us-east-1") sm = boto3.client("sagemaker", region_name="us-east-1") test_config = NotebookInstanceLifecycleConfigTestConfig() # Set up template for stack with two different OnCreate scripts stack_name = f"{test_config.resource_name}_stack" initial_on_create_script = "echo Hello World" updated_on_create_script = "echo Goodbye World" initial_template_json = test_config.get_cloudformation_template( on_create=initial_on_create_script ) updated_template_json = test_config.get_cloudformation_template( on_create=updated_on_create_script ) # Create stack with initial template and check attributes cf.create_stack(StackName=stack_name, TemplateBody=initial_template_json) outputs = _get_stack_outputs(cf, stack_name) initial_config_name = outputs["Name"] resource_description = getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: initial_config_name} ) len(resource_description["OnCreate"]).should.equal(1) initial_on_create_script.should.equal( resource_description["OnCreate"][0]["Content"] ) # Update stack and check attributes cf.update_stack(StackName=stack_name, TemplateBody=updated_template_json) outputs = _get_stack_outputs(cf, stack_name) updated_config_name = outputs["Name"] updated_config_name.should.equal(initial_config_name) resource_description = getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: updated_config_name} ) len(resource_description["OnCreate"]).should.equal(1) updated_on_create_script.should.equal( resource_description["OnCreate"][0]["Content"] ) @mock_cloudformation @mock_sagemaker def test_sagemaker_cloudformation_model_update(): cf = boto3.client("cloudformation", region_name="us-east-1") sm = boto3.client("sagemaker", region_name="us-east-1") test_config = ModelTestConfig() # Set up template for stack with two different image versions stack_name = f"{test_config.resource_name}_stack" image = "404615174143.dkr.ecr.us-east-2.amazonaws.com/kmeans:{}" initial_image_version = 1 updated_image_version = 2 initial_template_json = test_config.get_cloudformation_template( image=image.format(initial_image_version) ) updated_template_json = test_config.get_cloudformation_template( image=image.format(updated_image_version) ) # Create stack with initial template and check attributes cf.create_stack(StackName=stack_name, TemplateBody=initial_template_json) outputs = _get_stack_outputs(cf, stack_name) initial_model_name = outputs["Name"] resource_description = getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: initial_model_name} ) resource_description["PrimaryContainer"]["Image"].should.equal( image.format(initial_image_version) ) # Update stack and check attributes cf.update_stack(StackName=stack_name, TemplateBody=updated_template_json) outputs = _get_stack_outputs(cf, stack_name) updated_model_name = outputs["Name"] updated_model_name.should_not.equal(initial_model_name) resource_description = getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: updated_model_name} ) resource_description["PrimaryContainer"]["Image"].should.equal( image.format(updated_image_version) ) @mock_cloudformation @mock_sagemaker def test_sagemaker_cloudformation_endpoint_config_update(): cf = boto3.client("cloudformation", region_name="us-east-1") sm = boto3.client("sagemaker", region_name="us-east-1") test_config = EndpointConfigTestConfig() # Utilize test configuration to set-up any mock SageMaker resources test_config.run_setup_procedure(sm) # Set up template for stack with two different production variant counts stack_name = f"{test_config.resource_name}_stack" initial_num_production_variants = 1 updated_num_production_variants = 2 initial_template_json = test_config.get_cloudformation_template( num_production_variants=initial_num_production_variants ) updated_template_json = test_config.get_cloudformation_template( num_production_variants=updated_num_production_variants ) # Create stack with initial template and check attributes cf.create_stack(StackName=stack_name, TemplateBody=initial_template_json) outputs = _get_stack_outputs(cf, stack_name) initial_endpoint_config_name = outputs["Name"] resource_description = getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: initial_endpoint_config_name} ) len(resource_description["ProductionVariants"]).should.equal( initial_num_production_variants ) # Update stack and check attributes cf.update_stack(StackName=stack_name, TemplateBody=updated_template_json) outputs = _get_stack_outputs(cf, stack_name) updated_endpoint_config_name = outputs["Name"] updated_endpoint_config_name.should_not.equal(initial_endpoint_config_name) resource_description = getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: updated_endpoint_config_name} ) len(resource_description["ProductionVariants"]).should.equal( updated_num_production_variants ) @mock_cloudformation @mock_sagemaker def test_sagemaker_cloudformation_endpoint_update(): cf = boto3.client("cloudformation", region_name="us-east-1") sm = boto3.client("sagemaker", region_name="us-east-1") test_config = EndpointTestConfig() # Set up template for stack with two different endpoint config names stack_name = f"{test_config.resource_name}_stack" initial_endpoint_config_name = test_config.resource_name updated_endpoint_config_name = "updated-endpoint-config-name" initial_template_json = test_config.get_cloudformation_template( endpoint_config_name=initial_endpoint_config_name ) updated_template_json = test_config.get_cloudformation_template( endpoint_config_name=updated_endpoint_config_name ) # Create SM resources and stack with initial template and check attributes sm.create_model( ModelName=initial_endpoint_config_name, ExecutionRoleArn=f"arn:aws:iam::{ACCOUNT_ID}:role/FakeRole", PrimaryContainer={ "Image": "404615174143.dkr.ecr.us-east-2.amazonaws.com/linear-learner:1", }, ) sm.create_endpoint_config( EndpointConfigName=initial_endpoint_config_name, ProductionVariants=[ { "InitialInstanceCount": 1, "InitialVariantWeight": 1, "InstanceType": "ml.c4.xlarge", "ModelName": initial_endpoint_config_name, "VariantName": "variant-name-1", }, ], ) cf.create_stack(StackName=stack_name, TemplateBody=initial_template_json) outputs = _get_stack_outputs(cf, stack_name) initial_endpoint_name = outputs["Name"] resource_description = getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: initial_endpoint_name} ) resource_description["EndpointConfigName"].should.match( initial_endpoint_config_name ) # Create additional SM resources and update stack sm.create_model( ModelName=updated_endpoint_config_name, ExecutionRoleArn=f"arn:aws:iam::{ACCOUNT_ID}:role/FakeRole", PrimaryContainer={ "Image": "404615174143.dkr.ecr.us-east-2.amazonaws.com/linear-learner:1", }, ) sm.create_endpoint_config( EndpointConfigName=updated_endpoint_config_name, ProductionVariants=[ { "InitialInstanceCount": 1, "InitialVariantWeight": 1, "InstanceType": "ml.c4.xlarge", "ModelName": updated_endpoint_config_name, "VariantName": "variant-name-1", }, ], ) cf.update_stack(StackName=stack_name, TemplateBody=updated_template_json) outputs = _get_stack_outputs(cf, stack_name) updated_endpoint_name = outputs["Name"] updated_endpoint_name.should.equal(initial_endpoint_name) resource_description = getattr(sm, test_config.describe_function_name)( **{test_config.name_parameter: updated_endpoint_name} ) resource_description["EndpointConfigName"].should.match( updated_endpoint_config_name )