moto/tests/test_emr/test_emr_boto3.py
Bert Blommers 273ca63d59 Linting
2020-11-11 15:55:37 +00:00

988 lines
37 KiB
Python

# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import time
from copy import deepcopy
from datetime import datetime
import boto3
import json
import pytz
import six
import sure # noqa
from botocore.exceptions import ClientError
import pytest
from moto import mock_emr
run_job_flow_args = dict(
Instances={
"InstanceCount": 3,
"KeepJobFlowAliveWhenNoSteps": True,
"MasterInstanceType": "c3.medium",
"Placement": {"AvailabilityZone": "us-east-1a"},
"SlaveInstanceType": "c3.xlarge",
},
JobFlowRole="EMR_EC2_DefaultRole",
LogUri="s3://mybucket/log",
Name="cluster",
ServiceRole="EMR_DefaultRole",
VisibleToAllUsers=True,
)
input_instance_groups = [
{
"InstanceCount": 1,
"InstanceRole": "MASTER",
"InstanceType": "c1.medium",
"Market": "ON_DEMAND",
"Name": "master",
},
{
"InstanceCount": 3,
"InstanceRole": "CORE",
"InstanceType": "c1.medium",
"Market": "ON_DEMAND",
"Name": "core",
},
{
"InstanceCount": 6,
"InstanceRole": "TASK",
"InstanceType": "c1.large",
"Market": "SPOT",
"Name": "task-1",
"BidPrice": "0.07",
},
{
"InstanceCount": 10,
"InstanceRole": "TASK",
"InstanceType": "c1.xlarge",
"Market": "SPOT",
"Name": "task-2",
"BidPrice": "0.05",
"EbsConfiguration": {
"EbsBlockDeviceConfigs": [
{
"VolumeSpecification": {"VolumeType": "gp2", "SizeInGB": 800},
"VolumesPerInstance": 6,
},
],
"EbsOptimized": True,
},
},
]
@mock_emr
def test_describe_cluster():
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
args["Applications"] = [{"Name": "Spark", "Version": "2.4.2"}]
args["Configurations"] = [
{
"Classification": "yarn-site",
"Properties": {
"someproperty": "somevalue",
"someotherproperty": "someothervalue",
},
},
{
"Classification": "nested-configs",
"Properties": {},
"Configurations": [
{
"Classification": "nested-config",
"Properties": {"nested-property": "nested-value"},
}
],
},
]
args["Instances"]["AdditionalMasterSecurityGroups"] = ["additional-master"]
args["Instances"]["AdditionalSlaveSecurityGroups"] = ["additional-slave"]
args["Instances"]["Ec2KeyName"] = "mykey"
args["Instances"]["Ec2SubnetId"] = "subnet-8be41cec"
args["Instances"]["EmrManagedMasterSecurityGroup"] = "master-security-group"
args["Instances"]["EmrManagedSlaveSecurityGroup"] = "slave-security-group"
args["Instances"]["KeepJobFlowAliveWhenNoSteps"] = False
args["Instances"]["ServiceAccessSecurityGroup"] = "service-access-security-group"
args["Tags"] = [{"Key": "tag1", "Value": "val1"}, {"Key": "tag2", "Value": "val2"}]
cluster_id = client.run_job_flow(**args)["JobFlowId"]
cl = client.describe_cluster(ClusterId=cluster_id)["Cluster"]
cl["Applications"][0]["Name"].should.equal("Spark")
cl["Applications"][0]["Version"].should.equal("2.4.2")
cl["AutoTerminate"].should.equal(True)
config = cl["Configurations"][0]
config["Classification"].should.equal("yarn-site")
config["Properties"].should.equal(args["Configurations"][0]["Properties"])
nested_config = cl["Configurations"][1]
nested_config["Classification"].should.equal("nested-configs")
nested_config["Properties"].should.equal(args["Configurations"][1]["Properties"])
attrs = cl["Ec2InstanceAttributes"]
attrs["AdditionalMasterSecurityGroups"].should.equal(
args["Instances"]["AdditionalMasterSecurityGroups"]
)
attrs["AdditionalSlaveSecurityGroups"].should.equal(
args["Instances"]["AdditionalSlaveSecurityGroups"]
)
attrs["Ec2AvailabilityZone"].should.equal("us-east-1a")
attrs["Ec2KeyName"].should.equal(args["Instances"]["Ec2KeyName"])
attrs["Ec2SubnetId"].should.equal(args["Instances"]["Ec2SubnetId"])
attrs["EmrManagedMasterSecurityGroup"].should.equal(
args["Instances"]["EmrManagedMasterSecurityGroup"]
)
attrs["EmrManagedSlaveSecurityGroup"].should.equal(
args["Instances"]["EmrManagedSlaveSecurityGroup"]
)
attrs["IamInstanceProfile"].should.equal(args["JobFlowRole"])
attrs["ServiceAccessSecurityGroup"].should.equal(
args["Instances"]["ServiceAccessSecurityGroup"]
)
cl["Id"].should.equal(cluster_id)
cl["LogUri"].should.equal(args["LogUri"])
cl["MasterPublicDnsName"].should.be.a(six.string_types)
cl["Name"].should.equal(args["Name"])
cl["NormalizedInstanceHours"].should.equal(0)
# cl['ReleaseLabel'].should.equal('emr-5.0.0')
cl.shouldnt.have.key("RequestedAmiVersion")
cl["RunningAmiVersion"].should.equal("1.0.0")
# cl['SecurityConfiguration'].should.be.a(six.string_types)
cl["ServiceRole"].should.equal(args["ServiceRole"])
status = cl["Status"]
status["State"].should.equal("TERMINATED")
# cluster['Status']['StateChangeReason']
status["Timeline"]["CreationDateTime"].should.be.a("datetime.datetime")
# status['Timeline']['EndDateTime'].should.equal(datetime(2014, 1, 24, 2, 19, 46, tzinfo=pytz.utc))
status["Timeline"]["ReadyDateTime"].should.be.a("datetime.datetime")
dict((t["Key"], t["Value"]) for t in cl["Tags"]).should.equal(
dict((t["Key"], t["Value"]) for t in args["Tags"])
)
cl["TerminationProtected"].should.equal(False)
cl["VisibleToAllUsers"].should.equal(True)
@mock_emr
def test_describe_cluster_not_found():
conn = boto3.client("emr", region_name="us-east-1")
raised = False
try:
cluster = conn.describe_cluster(ClusterId="DummyId")
except ClientError as e:
if e.response["Error"]["Code"] == "ResourceNotFoundException":
raised = True
raised.should.equal(True)
@mock_emr
def test_describe_job_flows():
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
expected = {}
for idx in range(4):
cluster_name = "cluster" + str(idx)
args["Name"] = cluster_name
cluster_id = client.run_job_flow(**args)["JobFlowId"]
expected[cluster_id] = {
"Id": cluster_id,
"Name": cluster_name,
"State": "WAITING",
}
# need sleep since it appears the timestamp is always rounded to
# the nearest second internally
time.sleep(1)
timestamp = datetime.now(pytz.utc)
time.sleep(1)
for idx in range(4, 6):
cluster_name = "cluster" + str(idx)
args["Name"] = cluster_name
cluster_id = client.run_job_flow(**args)["JobFlowId"]
client.terminate_job_flows(JobFlowIds=[cluster_id])
expected[cluster_id] = {
"Id": cluster_id,
"Name": cluster_name,
"State": "TERMINATED",
}
resp = client.describe_job_flows()
resp["JobFlows"].should.have.length_of(6)
for cluster_id, y in expected.items():
resp = client.describe_job_flows(JobFlowIds=[cluster_id])
resp["JobFlows"].should.have.length_of(1)
resp["JobFlows"][0]["JobFlowId"].should.equal(cluster_id)
resp = client.describe_job_flows(JobFlowStates=["WAITING"])
resp["JobFlows"].should.have.length_of(4)
for x in resp["JobFlows"]:
x["ExecutionStatusDetail"]["State"].should.equal("WAITING")
resp = client.describe_job_flows(CreatedBefore=timestamp)
resp["JobFlows"].should.have.length_of(4)
resp = client.describe_job_flows(CreatedAfter=timestamp)
resp["JobFlows"].should.have.length_of(2)
@mock_emr
def test_describe_job_flow():
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
args["AmiVersion"] = "3.8.1"
args["Instances"].update(
{
"Ec2KeyName": "ec2keyname",
"Ec2SubnetId": "subnet-8be41cec",
"HadoopVersion": "2.4.0",
}
)
args["VisibleToAllUsers"] = True
cluster_id = client.run_job_flow(**args)["JobFlowId"]
jf = client.describe_job_flows(JobFlowIds=[cluster_id])["JobFlows"][0]
jf["AmiVersion"].should.equal(args["AmiVersion"])
jf.shouldnt.have.key("BootstrapActions")
esd = jf["ExecutionStatusDetail"]
esd["CreationDateTime"].should.be.a("datetime.datetime")
# esd['EndDateTime'].should.be.a('datetime.datetime')
# esd['LastStateChangeReason'].should.be.a(six.string_types)
esd["ReadyDateTime"].should.be.a("datetime.datetime")
esd["StartDateTime"].should.be.a("datetime.datetime")
esd["State"].should.equal("WAITING")
attrs = jf["Instances"]
attrs["Ec2KeyName"].should.equal(args["Instances"]["Ec2KeyName"])
attrs["Ec2SubnetId"].should.equal(args["Instances"]["Ec2SubnetId"])
attrs["HadoopVersion"].should.equal(args["Instances"]["HadoopVersion"])
attrs["InstanceCount"].should.equal(args["Instances"]["InstanceCount"])
for ig in attrs["InstanceGroups"]:
# ig['BidPrice']
ig["CreationDateTime"].should.be.a("datetime.datetime")
# ig['EndDateTime'].should.be.a('datetime.datetime')
ig["InstanceGroupId"].should.be.a(six.string_types)
ig["InstanceRequestCount"].should.be.a(int)
ig["InstanceRole"].should.be.within(["MASTER", "CORE"])
ig["InstanceRunningCount"].should.be.a(int)
ig["InstanceType"].should.be.within(["c3.medium", "c3.xlarge"])
# ig['LastStateChangeReason'].should.be.a(six.string_types)
ig["Market"].should.equal("ON_DEMAND")
ig["Name"].should.be.a(six.string_types)
ig["ReadyDateTime"].should.be.a("datetime.datetime")
ig["StartDateTime"].should.be.a("datetime.datetime")
ig["State"].should.equal("RUNNING")
attrs["KeepJobFlowAliveWhenNoSteps"].should.equal(True)
# attrs['MasterInstanceId'].should.be.a(six.string_types)
attrs["MasterInstanceType"].should.equal(args["Instances"]["MasterInstanceType"])
attrs["MasterPublicDnsName"].should.be.a(six.string_types)
attrs["NormalizedInstanceHours"].should.equal(0)
attrs["Placement"]["AvailabilityZone"].should.equal(
args["Instances"]["Placement"]["AvailabilityZone"]
)
attrs["SlaveInstanceType"].should.equal(args["Instances"]["SlaveInstanceType"])
attrs["TerminationProtected"].should.equal(False)
jf["JobFlowId"].should.equal(cluster_id)
jf["JobFlowRole"].should.equal(args["JobFlowRole"])
jf["LogUri"].should.equal(args["LogUri"])
jf["Name"].should.equal(args["Name"])
jf["ServiceRole"].should.equal(args["ServiceRole"])
jf["Steps"].should.equal([])
jf["SupportedProducts"].should.equal([])
jf["VisibleToAllUsers"].should.equal(True)
@mock_emr
def test_list_clusters():
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
expected = {}
for idx in range(40):
cluster_name = "jobflow" + str(idx)
args["Name"] = cluster_name
cluster_id = client.run_job_flow(**args)["JobFlowId"]
expected[cluster_id] = {
"Id": cluster_id,
"Name": cluster_name,
"NormalizedInstanceHours": 0,
"State": "WAITING",
}
# need sleep since it appears the timestamp is always rounded to
# the nearest second internally
time.sleep(1)
timestamp = datetime.now(pytz.utc)
time.sleep(1)
for idx in range(40, 70):
cluster_name = "jobflow" + str(idx)
args["Name"] = cluster_name
cluster_id = client.run_job_flow(**args)["JobFlowId"]
client.terminate_job_flows(JobFlowIds=[cluster_id])
expected[cluster_id] = {
"Id": cluster_id,
"Name": cluster_name,
"NormalizedInstanceHours": 0,
"State": "TERMINATED",
}
args = {}
while 1:
resp = client.list_clusters(**args)
clusters = resp["Clusters"]
len(clusters).should.be.lower_than_or_equal_to(50)
for x in clusters:
y = expected[x["Id"]]
x["Id"].should.equal(y["Id"])
x["Name"].should.equal(y["Name"])
x["NormalizedInstanceHours"].should.equal(y["NormalizedInstanceHours"])
x["Status"]["State"].should.equal(y["State"])
x["Status"]["Timeline"]["CreationDateTime"].should.be.a("datetime.datetime")
if y["State"] == "TERMINATED":
x["Status"]["Timeline"]["EndDateTime"].should.be.a("datetime.datetime")
else:
x["Status"]["Timeline"].shouldnt.have.key("EndDateTime")
x["Status"]["Timeline"]["ReadyDateTime"].should.be.a("datetime.datetime")
marker = resp.get("Marker")
if marker is None:
break
args = {"Marker": marker}
resp = client.list_clusters(ClusterStates=["TERMINATED"])
resp["Clusters"].should.have.length_of(30)
for x in resp["Clusters"]:
x["Status"]["State"].should.equal("TERMINATED")
resp = client.list_clusters(CreatedBefore=timestamp)
resp["Clusters"].should.have.length_of(40)
resp = client.list_clusters(CreatedAfter=timestamp)
resp["Clusters"].should.have.length_of(30)
@mock_emr
def test_run_job_flow():
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
cluster_id = client.run_job_flow(**args)["JobFlowId"]
resp = client.describe_job_flows(JobFlowIds=[cluster_id])["JobFlows"][0]
resp["ExecutionStatusDetail"]["State"].should.equal("WAITING")
resp["JobFlowId"].should.equal(cluster_id)
resp["Name"].should.equal(args["Name"])
resp["Instances"]["MasterInstanceType"].should.equal(
args["Instances"]["MasterInstanceType"]
)
resp["Instances"]["SlaveInstanceType"].should.equal(
args["Instances"]["SlaveInstanceType"]
)
resp["LogUri"].should.equal(args["LogUri"])
resp["VisibleToAllUsers"].should.equal(args["VisibleToAllUsers"])
resp["Instances"]["NormalizedInstanceHours"].should.equal(0)
resp["Steps"].should.equal([])
@mock_emr
def test_run_job_flow_with_invalid_params():
client = boto3.client("emr", region_name="us-east-1")
with pytest.raises(ClientError) as ex:
# cannot set both AmiVersion and ReleaseLabel
args = deepcopy(run_job_flow_args)
args["AmiVersion"] = "2.4"
args["ReleaseLabel"] = "emr-5.0.0"
client.run_job_flow(**args)
ex.value.response["Error"]["Code"].should.equal("ValidationException")
@mock_emr
def test_run_job_flow_in_multiple_regions():
regions = {}
for region in ["us-east-1", "eu-west-1"]:
client = boto3.client("emr", region_name=region)
args = deepcopy(run_job_flow_args)
args["Name"] = region
cluster_id = client.run_job_flow(**args)["JobFlowId"]
regions[region] = {"client": client, "cluster_id": cluster_id}
for region in regions.keys():
client = regions[region]["client"]
resp = client.describe_cluster(ClusterId=regions[region]["cluster_id"])
resp["Cluster"]["Name"].should.equal(region)
@mock_emr
def test_run_job_flow_with_new_params():
client = boto3.client("emr", region_name="us-east-1")
resp = client.run_job_flow(**run_job_flow_args)
resp.should.have.key("JobFlowId")
@mock_emr
def test_run_job_flow_with_visible_to_all_users():
client = boto3.client("emr", region_name="us-east-1")
for expected in (True, False):
args = deepcopy(run_job_flow_args)
args["VisibleToAllUsers"] = expected
resp = client.run_job_flow(**args)
cluster_id = resp["JobFlowId"]
resp = client.describe_cluster(ClusterId=cluster_id)
resp["Cluster"]["VisibleToAllUsers"].should.equal(expected)
def _do_assertion_ebs_configuration(x, y):
total_volumes = 0
total_size = 0
for ebs_block in y["EbsConfiguration"]["EbsBlockDeviceConfigs"]:
total_volumes += ebs_block["VolumesPerInstance"]
total_size += ebs_block["VolumeSpecification"]["SizeInGB"]
# Multiply by total volumes
total_size = total_size * total_volumes
comp_total_size = 0
for ebs_block in x["EbsBlockDevices"]:
comp_total_size += ebs_block["VolumeSpecification"]["SizeInGB"]
len(x["EbsBlockDevices"]).should.equal(total_volumes)
comp_total_size.should.equal(comp_total_size)
@mock_emr
def test_run_job_flow_with_instance_groups():
input_groups = dict((g["Name"], g) for g in input_instance_groups)
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
args["Instances"] = {"InstanceGroups": input_instance_groups}
cluster_id = client.run_job_flow(**args)["JobFlowId"]
groups = client.list_instance_groups(ClusterId=cluster_id)["InstanceGroups"]
for x in groups:
y = input_groups[x["Name"]]
x.should.have.key("Id")
x["RequestedInstanceCount"].should.equal(y["InstanceCount"])
x["InstanceGroupType"].should.equal(y["InstanceRole"])
x["InstanceType"].should.equal(y["InstanceType"])
x["Market"].should.equal(y["Market"])
if "BidPrice" in y:
x["BidPrice"].should.equal(y["BidPrice"])
if "EbsConfiguration" in y:
_do_assertion_ebs_configuration(x, y)
auto_scaling_policy = {
"Constraints": {"MinCapacity": 2, "MaxCapacity": 10},
"Rules": [
{
"Name": "Default-scale-out",
"Description": "Replicates the default scale-out rule in the console for YARN memory.",
"Action": {
"SimpleScalingPolicyConfiguration": {
"AdjustmentType": "CHANGE_IN_CAPACITY",
"ScalingAdjustment": 1,
"CoolDown": 300,
}
},
"Trigger": {
"CloudWatchAlarmDefinition": {
"ComparisonOperator": "LESS_THAN",
"EvaluationPeriods": 1,
"MetricName": "YARNMemoryAvailablePercentage",
"Namespace": "AWS/ElasticMapReduce",
"Period": 300,
"Threshold": 15.0,
"Statistic": "AVERAGE",
"Unit": "PERCENT",
"Dimensions": [{"Key": "JobFlowId", "Value": "${emr.clusterId}"}],
}
},
}
],
}
@mock_emr
def test_run_job_flow_with_instance_groups_with_autoscaling():
input_groups = dict((g["Name"], g) for g in input_instance_groups)
input_groups["core"]["AutoScalingPolicy"] = auto_scaling_policy
input_groups["task-1"]["AutoScalingPolicy"] = auto_scaling_policy
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
args["Instances"] = {"InstanceGroups": input_instance_groups}
cluster_id = client.run_job_flow(**args)["JobFlowId"]
groups = client.list_instance_groups(ClusterId=cluster_id)["InstanceGroups"]
for x in groups:
y = deepcopy(input_groups[x["Name"]])
if "AutoScalingPolicy" in y:
x["AutoScalingPolicy"]["Status"]["State"].should.equal("ATTACHED")
returned_policy = deepcopy(x["AutoScalingPolicy"])
auto_scaling_policy_with_cluster_id = _patch_cluster_id_placeholder_in_autoscaling_policy(
y["AutoScalingPolicy"], cluster_id
)
del returned_policy["Status"]
returned_policy.should.equal(auto_scaling_policy_with_cluster_id)
@mock_emr
def test_put_remove_auto_scaling_policy():
input_groups = dict((g["Name"], g) for g in input_instance_groups)
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
args["Instances"] = {"InstanceGroups": input_instance_groups}
cluster_id = client.run_job_flow(**args)["JobFlowId"]
core_instance_group = [
ig
for ig in client.list_instance_groups(ClusterId=cluster_id)["InstanceGroups"]
if ig["InstanceGroupType"] == "CORE"
][0]
resp = client.put_auto_scaling_policy(
ClusterId=cluster_id,
InstanceGroupId=core_instance_group["Id"],
AutoScalingPolicy=auto_scaling_policy,
)
auto_scaling_policy_with_cluster_id = _patch_cluster_id_placeholder_in_autoscaling_policy(
auto_scaling_policy, cluster_id
)
del resp["AutoScalingPolicy"]["Status"]
resp["AutoScalingPolicy"].should.equal(auto_scaling_policy_with_cluster_id)
core_instance_group = [
ig
for ig in client.list_instance_groups(ClusterId=cluster_id)["InstanceGroups"]
if ig["InstanceGroupType"] == "CORE"
][0]
("AutoScalingPolicy" in core_instance_group).should.equal(True)
client.remove_auto_scaling_policy(
ClusterId=cluster_id, InstanceGroupId=core_instance_group["Id"]
)
core_instance_group = [
ig
for ig in client.list_instance_groups(ClusterId=cluster_id)["InstanceGroups"]
if ig["InstanceGroupType"] == "CORE"
][0]
("AutoScalingPolicy" not in core_instance_group).should.equal(True)
def _patch_cluster_id_placeholder_in_autoscaling_policy(
auto_scaling_policy, cluster_id
):
policy_copy = deepcopy(auto_scaling_policy)
for rule in policy_copy["Rules"]:
for dimension in rule["Trigger"]["CloudWatchAlarmDefinition"]["Dimensions"]:
dimension["Value"] = cluster_id
return policy_copy
@mock_emr
def test_run_job_flow_with_custom_ami():
client = boto3.client("emr", region_name="us-east-1")
with pytest.raises(ClientError) as ex:
# CustomAmiId available in Amazon EMR 5.7.0 and later
args = deepcopy(run_job_flow_args)
args["CustomAmiId"] = "MyEmrCustomId"
args["ReleaseLabel"] = "emr-5.6.0"
client.run_job_flow(**args)
ex.value.response["Error"]["Code"].should.equal("ValidationException")
ex.value.response["Error"]["Message"].should.equal("Custom AMI is not allowed")
with pytest.raises(ClientError) as ex:
args = deepcopy(run_job_flow_args)
args["CustomAmiId"] = "MyEmrCustomId"
args["AmiVersion"] = "3.8.1"
client.run_job_flow(**args)
ex.value.response["Error"]["Code"].should.equal("ValidationException")
ex.value.response["Error"]["Message"].should.equal(
"Custom AMI is not supported in this version of EMR"
)
with pytest.raises(ClientError) as ex:
# AMI version and release label exception raises before CustomAmi exception
args = deepcopy(run_job_flow_args)
args["CustomAmiId"] = "MyEmrCustomId"
args["ReleaseLabel"] = "emr-5.6.0"
args["AmiVersion"] = "3.8.1"
client.run_job_flow(**args)
ex.value.response["Error"]["Code"].should.equal("ValidationException")
ex.value.response["Error"]["Message"].should.contain(
"Only one AMI version and release label may be specified."
)
args = deepcopy(run_job_flow_args)
args["CustomAmiId"] = "MyEmrCustomAmi"
args["ReleaseLabel"] = "emr-5.7.0"
cluster_id = client.run_job_flow(**args)["JobFlowId"]
resp = client.describe_cluster(ClusterId=cluster_id)
resp["Cluster"]["CustomAmiId"].should.equal("MyEmrCustomAmi")
@mock_emr
def test_run_job_flow_with_step_concurrency():
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
args["StepConcurrencyLevel"] = 2
cluster_id = client.run_job_flow(**args)["JobFlowId"]
resp = client.describe_cluster(ClusterId=cluster_id)["Cluster"]
resp["Name"].should.equal(args["Name"])
resp["Status"]["State"].should.equal("WAITING")
resp["StepConcurrencyLevel"].should.equal(2)
@mock_emr
def test_modify_cluster():
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
args["StepConcurrencyLevel"] = 2
cluster_id = client.run_job_flow(**args)["JobFlowId"]
resp = client.describe_cluster(ClusterId=cluster_id)["Cluster"]
resp["Name"].should.equal(args["Name"])
resp["Status"]["State"].should.equal("WAITING")
resp["StepConcurrencyLevel"].should.equal(2)
resp = client.modify_cluster(ClusterId=cluster_id, StepConcurrencyLevel=4)
resp["StepConcurrencyLevel"].should.equal(4)
resp = client.describe_cluster(ClusterId=cluster_id)["Cluster"]
resp["StepConcurrencyLevel"].should.equal(4)
@mock_emr
def test_set_termination_protection():
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
args["Instances"]["TerminationProtected"] = False
resp = client.run_job_flow(**args)
cluster_id = resp["JobFlowId"]
resp = client.describe_cluster(ClusterId=cluster_id)
resp["Cluster"]["TerminationProtected"].should.equal(False)
for expected in (True, False):
resp = client.set_termination_protection(
JobFlowIds=[cluster_id], TerminationProtected=expected
)
resp = client.describe_cluster(ClusterId=cluster_id)
resp["Cluster"]["TerminationProtected"].should.equal(expected)
@mock_emr
def test_set_visible_to_all_users():
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
args["VisibleToAllUsers"] = False
resp = client.run_job_flow(**args)
cluster_id = resp["JobFlowId"]
resp = client.describe_cluster(ClusterId=cluster_id)
resp["Cluster"]["VisibleToAllUsers"].should.equal(False)
for expected in (True, False):
resp = client.set_visible_to_all_users(
JobFlowIds=[cluster_id], VisibleToAllUsers=expected
)
resp = client.describe_cluster(ClusterId=cluster_id)
resp["Cluster"]["VisibleToAllUsers"].should.equal(expected)
@mock_emr
def test_terminate_job_flows():
client = boto3.client("emr", region_name="us-east-1")
resp = client.run_job_flow(**run_job_flow_args)
cluster_id = resp["JobFlowId"]
resp = client.describe_cluster(ClusterId=cluster_id)
resp["Cluster"]["Status"]["State"].should.equal("WAITING")
resp = client.terminate_job_flows(JobFlowIds=[cluster_id])
resp = client.describe_cluster(ClusterId=cluster_id)
resp["Cluster"]["Status"]["State"].should.equal("TERMINATED")
# testing multiple end points for each feature
@mock_emr
def test_bootstrap_actions():
bootstrap_actions = [
{
"Name": "bs1",
"ScriptBootstrapAction": {
"Args": ["arg1", "arg2"],
"Path": "s3://path/to/script",
},
},
{
"Name": "bs2",
"ScriptBootstrapAction": {"Args": [], "Path": "s3://path/to/anotherscript"},
},
]
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
args["BootstrapActions"] = bootstrap_actions
cluster_id = client.run_job_flow(**args)["JobFlowId"]
cl = client.describe_job_flows(JobFlowIds=[cluster_id])["JobFlows"][0]
for x, y in zip(cl["BootstrapActions"], bootstrap_actions):
x["BootstrapActionConfig"].should.equal(y)
resp = client.list_bootstrap_actions(ClusterId=cluster_id)
for x, y in zip(resp["BootstrapActions"], bootstrap_actions):
x["Name"].should.equal(y["Name"])
if "Args" in y["ScriptBootstrapAction"]:
x["Args"].should.equal(y["ScriptBootstrapAction"]["Args"])
x["ScriptPath"].should.equal(y["ScriptBootstrapAction"]["Path"])
@mock_emr
def test_instance_groups():
input_groups = dict((g["Name"], g) for g in input_instance_groups)
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
for key in ["MasterInstanceType", "SlaveInstanceType", "InstanceCount"]:
del args["Instances"][key]
args["Instances"]["InstanceGroups"] = input_instance_groups[:2]
cluster_id = client.run_job_flow(**args)["JobFlowId"]
jf = client.describe_job_flows(JobFlowIds=[cluster_id])["JobFlows"][0]
base_instance_count = jf["Instances"]["InstanceCount"]
instance_groups_to_add = deepcopy(input_instance_groups[2:])
instance_groups_to_add[0]["AutoScalingPolicy"] = auto_scaling_policy
instance_groups_to_add[1]["AutoScalingPolicy"] = auto_scaling_policy
client.add_instance_groups(
JobFlowId=cluster_id, InstanceGroups=instance_groups_to_add
)
jf = client.describe_job_flows(JobFlowIds=[cluster_id])["JobFlows"][0]
jf["Instances"]["InstanceCount"].should.equal(
sum(g["InstanceCount"] for g in input_instance_groups)
)
for x in jf["Instances"]["InstanceGroups"]:
y = input_groups[x["Name"]]
if "BidPrice" in y:
x["BidPrice"].should.equal(y["BidPrice"])
x["CreationDateTime"].should.be.a("datetime.datetime")
# x['EndDateTime'].should.be.a('datetime.datetime')
x.should.have.key("InstanceGroupId")
x["InstanceRequestCount"].should.equal(y["InstanceCount"])
x["InstanceRole"].should.equal(y["InstanceRole"])
x["InstanceRunningCount"].should.equal(y["InstanceCount"])
x["InstanceType"].should.equal(y["InstanceType"])
# x['LastStateChangeReason'].should.equal(y['LastStateChangeReason'])
x["Market"].should.equal(y["Market"])
x["Name"].should.equal(y["Name"])
x["ReadyDateTime"].should.be.a("datetime.datetime")
x["StartDateTime"].should.be.a("datetime.datetime")
x["State"].should.equal("RUNNING")
groups = client.list_instance_groups(ClusterId=cluster_id)["InstanceGroups"]
for x in groups:
y = deepcopy(input_groups[x["Name"]])
if "BidPrice" in y:
x["BidPrice"].should.equal(y["BidPrice"])
if "AutoScalingPolicy" in y:
x["AutoScalingPolicy"]["Status"]["State"].should.equal("ATTACHED")
returned_policy = dict(x["AutoScalingPolicy"])
del returned_policy["Status"]
policy = json.loads(
json.dumps(y["AutoScalingPolicy"]).replace(
"${emr.clusterId}", cluster_id
)
)
returned_policy.should.equal(policy)
if "EbsConfiguration" in y:
_do_assertion_ebs_configuration(x, y)
# Configurations
# EbsBlockDevices
# EbsOptimized
x.should.have.key("Id")
x["InstanceGroupType"].should.equal(y["InstanceRole"])
x["InstanceType"].should.equal(y["InstanceType"])
x["Market"].should.equal(y["Market"])
x["Name"].should.equal(y["Name"])
x["RequestedInstanceCount"].should.equal(y["InstanceCount"])
x["RunningInstanceCount"].should.equal(y["InstanceCount"])
# ShrinkPolicy
x["Status"]["State"].should.equal("RUNNING")
x["Status"]["StateChangeReason"]["Code"].should.be.a(six.string_types)
# x['Status']['StateChangeReason']['Message'].should.be.a(six.string_types)
x["Status"]["Timeline"]["CreationDateTime"].should.be.a("datetime.datetime")
# x['Status']['Timeline']['EndDateTime'].should.be.a('datetime.datetime')
x["Status"]["Timeline"]["ReadyDateTime"].should.be.a("datetime.datetime")
igs = dict((g["Name"], g) for g in groups)
client.modify_instance_groups(
InstanceGroups=[
{"InstanceGroupId": igs["task-1"]["Id"], "InstanceCount": 2},
{"InstanceGroupId": igs["task-2"]["Id"], "InstanceCount": 3},
]
)
jf = client.describe_job_flows(JobFlowIds=[cluster_id])["JobFlows"][0]
jf["Instances"]["InstanceCount"].should.equal(base_instance_count + 5)
igs = dict((g["Name"], g) for g in jf["Instances"]["InstanceGroups"])
igs["task-1"]["InstanceRunningCount"].should.equal(2)
igs["task-2"]["InstanceRunningCount"].should.equal(3)
@mock_emr
def test_steps():
input_steps = [
{
"HadoopJarStep": {
"Args": [
"hadoop-streaming",
"-files",
"s3://elasticmapreduce/samples/wordcount/wordSplitter.py#wordSplitter.py",
"-mapper",
"python wordSplitter.py",
"-input",
"s3://elasticmapreduce/samples/wordcount/input",
"-output",
"s3://output_bucket/output/wordcount_output",
"-reducer",
"aggregate",
],
"Jar": "command-runner.jar",
},
"Name": "My wordcount example",
},
{
"HadoopJarStep": {
"Args": [
"hadoop-streaming",
"-files",
"s3://elasticmapreduce/samples/wordcount/wordSplitter2.py#wordSplitter2.py",
"-mapper",
"python wordSplitter2.py",
"-input",
"s3://elasticmapreduce/samples/wordcount/input2",
"-output",
"s3://output_bucket/output/wordcount_output2",
"-reducer",
"aggregate",
],
"Jar": "command-runner.jar",
},
"Name": "My wordcount example2",
},
]
# TODO: implementation and test for cancel_steps
client = boto3.client("emr", region_name="us-east-1")
args = deepcopy(run_job_flow_args)
args["Steps"] = [input_steps[0]]
cluster_id = client.run_job_flow(**args)["JobFlowId"]
jf = client.describe_job_flows(JobFlowIds=[cluster_id])["JobFlows"][0]
jf["Steps"].should.have.length_of(1)
client.add_job_flow_steps(JobFlowId=cluster_id, Steps=[input_steps[1]])
jf = client.describe_job_flows(JobFlowIds=[cluster_id])["JobFlows"][0]
jf["Steps"].should.have.length_of(2)
for idx, (x, y) in enumerate(zip(jf["Steps"], input_steps)):
x["ExecutionStatusDetail"].should.have.key("CreationDateTime")
# x['ExecutionStatusDetail'].should.have.key('EndDateTime')
# x['ExecutionStatusDetail'].should.have.key('LastStateChangeReason')
# x['ExecutionStatusDetail'].should.have.key('StartDateTime')
x["ExecutionStatusDetail"]["State"].should.equal(
"STARTING" if idx == 0 else "PENDING"
)
x["StepConfig"]["ActionOnFailure"].should.equal("TERMINATE_CLUSTER")
x["StepConfig"]["HadoopJarStep"]["Args"].should.equal(
y["HadoopJarStep"]["Args"]
)
x["StepConfig"]["HadoopJarStep"]["Jar"].should.equal(y["HadoopJarStep"]["Jar"])
if "MainClass" in y["HadoopJarStep"]:
x["StepConfig"]["HadoopJarStep"]["MainClass"].should.equal(
y["HadoopJarStep"]["MainClass"]
)
if "Properties" in y["HadoopJarStep"]:
x["StepConfig"]["HadoopJarStep"]["Properties"].should.equal(
y["HadoopJarStep"]["Properties"]
)
x["StepConfig"]["Name"].should.equal(y["Name"])
expected = dict((s["Name"], s) for s in input_steps)
steps = client.list_steps(ClusterId=cluster_id)["Steps"]
steps.should.have.length_of(2)
for x in steps:
y = expected[x["Name"]]
x["ActionOnFailure"].should.equal("TERMINATE_CLUSTER")
x["Config"]["Args"].should.equal(y["HadoopJarStep"]["Args"])
x["Config"]["Jar"].should.equal(y["HadoopJarStep"]["Jar"])
# x['Config']['MainClass'].should.equal(y['HadoopJarStep']['MainClass'])
# Properties
x["Id"].should.be.a(six.string_types)
x["Name"].should.equal(y["Name"])
x["Status"]["State"].should.be.within(["STARTING", "PENDING"])
# StateChangeReason
x["Status"]["Timeline"]["CreationDateTime"].should.be.a("datetime.datetime")
# x['Status']['Timeline']['EndDateTime'].should.be.a('datetime.datetime')
# Only the first step will have started - we don't know anything about when it finishes, so the second step never starts
if x["Name"] == "My wordcount example":
x["Status"]["Timeline"]["StartDateTime"].should.be.a("datetime.datetime")
x = client.describe_step(ClusterId=cluster_id, StepId=x["Id"])["Step"]
x["ActionOnFailure"].should.equal("TERMINATE_CLUSTER")
x["Config"]["Args"].should.equal(y["HadoopJarStep"]["Args"])
x["Config"]["Jar"].should.equal(y["HadoopJarStep"]["Jar"])
# x['Config']['MainClass'].should.equal(y['HadoopJarStep']['MainClass'])
# Properties
x["Id"].should.be.a(six.string_types)
x["Name"].should.equal(y["Name"])
x["Status"]["State"].should.be.within(["STARTING", "PENDING"])
# StateChangeReason
x["Status"]["Timeline"]["CreationDateTime"].should.be.a("datetime.datetime")
# x['Status']['Timeline']['EndDateTime'].should.be.a('datetime.datetime')
# x['Status']['Timeline']['StartDateTime'].should.be.a('datetime.datetime')
step_id = steps[0]["Id"]
steps = client.list_steps(ClusterId=cluster_id, StepIds=[step_id])["Steps"]
steps.should.have.length_of(1)
steps[0]["Id"].should.equal(step_id)
steps = client.list_steps(ClusterId=cluster_id, StepStates=["STARTING"])["Steps"]
steps.should.have.length_of(1)
steps[0]["Id"].should.equal(step_id)
@mock_emr
def test_tags():
input_tags = [
{"Key": "newkey1", "Value": "newval1"},
{"Key": "newkey2", "Value": "newval2"},
]
client = boto3.client("emr", region_name="us-east-1")
cluster_id = client.run_job_flow(**run_job_flow_args)["JobFlowId"]
client.add_tags(ResourceId=cluster_id, Tags=input_tags)
resp = client.describe_cluster(ClusterId=cluster_id)["Cluster"]
resp["Tags"].should.have.length_of(2)
dict((t["Key"], t["Value"]) for t in resp["Tags"]).should.equal(
dict((t["Key"], t["Value"]) for t in input_tags)
)
client.remove_tags(ResourceId=cluster_id, TagKeys=[t["Key"] for t in input_tags])
resp = client.describe_cluster(ClusterId=cluster_id)["Cluster"]
resp["Tags"].should.equal([])