moto/moto/transcribe/models.py
2023-04-29 22:21:00 +00:00

878 lines
33 KiB
Python

from datetime import datetime, timedelta
from typing import Any, Dict, List, Optional
from moto.core import BaseBackend, BackendDict, BaseModel
from moto.moto_api import state_manager
from moto.moto_api._internal import mock_random
from moto.moto_api._internal.managed_state_model import ManagedState
from .exceptions import ConflictException, BadRequestException
class BaseObject(BaseModel):
def camelCase(self, key: str) -> str:
words = []
for word in key.split("_"):
words.append(word.title())
return "".join(words)
def gen_response_object(self) -> Dict[str, Any]:
response_object: Dict[str, Any] = dict()
for key, value in self.__dict__.items():
if "_" in key:
response_object[self.camelCase(key)] = value
else:
response_object[key[0].upper() + key[1:]] = value
return response_object
@property
def response_object(self) -> Dict[str, Any]: # type: ignore[misc]
return self.gen_response_object()
class FakeTranscriptionJob(BaseObject, ManagedState):
def __init__(
self,
account_id: str,
region_name: str,
transcription_job_name: str,
language_code: Optional[str],
media_sample_rate_hertz: Optional[int],
media_format: Optional[str],
media: Dict[str, str],
output_bucket_name: Optional[str],
output_key: Optional[str],
output_encryption_kms_key_id: Optional[str],
settings: Optional[Dict[str, Any]],
model_settings: Optional[Dict[str, Optional[str]]],
job_execution_settings: Optional[Dict[str, Any]],
content_redaction: Optional[Dict[str, Any]],
identify_language: Optional[bool],
identify_multiple_languages: Optional[bool],
language_options: Optional[List[str]],
):
ManagedState.__init__(
self,
"transcribe::transcriptionjob",
transitions=[
(None, "QUEUED"),
("QUEUED", "IN_PROGRESS"),
("IN_PROGRESS", "COMPLETED"),
],
)
self._account_id = account_id
self._region_name = region_name
self.transcription_job_name = transcription_job_name
self.language_code = language_code
self.language_codes: Optional[List[Dict[str, Any]]] = None
self.media_sample_rate_hertz = media_sample_rate_hertz
self.media_format = media_format
self.media = media
self.transcript: Optional[Dict[str, str]] = None
self.start_time: Optional[str] = None
self.completion_time: Optional[str] = None
self.creation_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.failure_reason = None
self.settings = settings or {
"ChannelIdentification": False,
"ShowAlternatives": False,
"ShowSpeakerLabels": False,
}
self.model_settings = model_settings or {"LanguageModelName": None}
self.job_execution_settings = job_execution_settings or {
"AllowDeferredExecution": False,
"DataAccessRoleArn": None,
}
self.content_redaction = content_redaction or {
"RedactionType": None,
"RedactionOutput": None,
}
self.identify_language = identify_language
self.identify_multiple_languages = identify_multiple_languages
self.language_options = language_options
self.identified_language_score: Optional[float] = None
self._output_bucket_name = output_bucket_name
self.output_key = output_key
self._output_encryption_kms_key_id = output_encryption_kms_key_id
self.output_location_type = (
"CUSTOMER_BUCKET" if self._output_bucket_name else "SERVICE_BUCKET"
)
def response_object(self, response_type: str) -> Dict[str, Any]: # type: ignore
response_field_dict = {
"CREATE": [
"TranscriptionJobName",
"TranscriptionJobStatus",
"LanguageCode",
"LanguageCodes",
"MediaFormat",
"Media",
"Settings",
"StartTime",
"CreationTime",
"IdentifyLanguage",
"IdentifyMultipleLanguages",
"LanguageOptions",
"JobExecutionSettings",
],
"GET": [
"TranscriptionJobName",
"TranscriptionJobStatus",
"LanguageCode",
"LanguageCodes",
"MediaSampleRateHertz",
"MediaFormat",
"Media",
"Settings",
"Transcript",
"StartTime",
"CreationTime",
"CompletionTime",
"IdentifyLanguage",
"IdentifyMultipleLanguages",
"LanguageOptions",
"IdentifiedLanguageScore",
],
"LIST": [
"TranscriptionJobName",
"CreationTime",
"StartTime",
"CompletionTime",
"LanguageCode",
"LanguageCodes",
"TranscriptionJobStatus",
"FailureReason",
"IdentifyLanguage",
"IdentifyMultipleLanguages",
"IdentifiedLanguageScore",
"OutputLocationType",
],
}
response_fields = response_field_dict[response_type]
response_object = self.gen_response_object()
response_object["TranscriptionJobStatus"] = self.status
if response_type != "LIST":
return {
"TranscriptionJob": {
k: v
for k, v in response_object.items()
if k in response_fields and v is not None and v != [None]
}
}
else:
return {
k: v
for k, v in response_object.items()
if k in response_fields and v is not None and v != [None]
}
def advance(self) -> None:
old_status = self.status
super().advance()
new_status = self.status
if old_status == new_status:
return
if new_status == "IN_PROGRESS":
self.start_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
if not self.media_sample_rate_hertz:
self.media_sample_rate_hertz = 44100
if not self.media_format:
file_ext = self.media["MediaFileUri"].split(".")[-1].lower()
self.media_format = (
file_ext if file_ext in ["mp3", "mp4", "wav", "flac"] else "mp3"
)
if self.identify_language:
self.identified_language_score = 0.999645948
# Simply identify first language passed in language_options
# If none is set, default to "en-US"
if self.language_options is not None and len(self.language_options) > 0:
self.language_code = self.language_options[0]
else:
self.language_code = "en-US"
if self.identify_multiple_languages:
self.identified_language_score = 0.999645948
# Identify first two languages passed in language_options
# If none is set, default to "en-US"
self.language_codes: List[Dict[str, Any]] = [] # type: ignore[no-redef]
if self.language_options is None or len(self.language_options) == 0:
self.language_codes.append( # type: ignore
{"LanguageCode": "en-US", "DurationInSeconds": 123.0}
)
else:
self.language_codes.append( # type: ignore
{
"LanguageCode": self.language_options[0],
"DurationInSeconds": 123.0,
}
)
if len(self.language_options) > 1:
self.language_codes.append( # type: ignore
{
"LanguageCode": self.language_options[1],
"DurationInSeconds": 321.0,
}
)
elif new_status == "COMPLETED":
self.completion_time = (datetime.now() + timedelta(seconds=10)).strftime(
"%Y-%m-%d %H:%M:%S"
)
if self._output_bucket_name:
transcript_file_uri = f"https://s3.{self._region_name}.amazonaws.com/{self._output_bucket_name}/"
if self.output_key is not None:
transcript_file_uri += f"{self.output_key}/"
transcript_file_uri += f"{self.transcription_job_name}.json"
self.output_location_type = "CUSTOMER_BUCKET"
else:
transcript_file_uri = f"https://s3.{self._region_name}.amazonaws.com/aws-transcribe-{self._region_name}-prod/{self._account_id}/{self.transcription_job_name}/{mock_random.uuid4()}/asrOutput.json"
self.output_location_type = "SERVICE_BUCKET"
self.transcript = {"TranscriptFileUri": transcript_file_uri}
class FakeVocabulary(BaseObject, ManagedState):
def __init__(
self,
account_id: str,
region_name: str,
vocabulary_name: str,
language_code: str,
phrases: Optional[List[str]],
vocabulary_file_uri: Optional[str],
):
# Configured ManagedState
super().__init__(
"transcribe::vocabulary",
transitions=[(None, "PENDING"), ("PENDING", "READY")],
)
# Configure internal properties
self._region_name = region_name
self.vocabulary_name = vocabulary_name
self.language_code = language_code
self.phrases = phrases
self.vocabulary_file_uri = vocabulary_file_uri
self.last_modified_time: Optional[str] = None
self.failure_reason = None
self.download_uri = f"https://s3.{region_name}.amazonaws.com/aws-transcribe-dictionary-model-{region_name}-prod/{account_id}/{vocabulary_name}/{mock_random.uuid4()}/input.txt"
def response_object(self, response_type: str) -> Dict[str, Any]: # type: ignore
response_field_dict = {
"CREATE": [
"VocabularyName",
"LanguageCode",
"VocabularyState",
"LastModifiedTime",
"FailureReason",
],
"GET": [
"VocabularyName",
"LanguageCode",
"VocabularyState",
"LastModifiedTime",
"FailureReason",
"DownloadUri",
],
"LIST": [
"VocabularyName",
"LanguageCode",
"LastModifiedTime",
"VocabularyState",
],
}
response_fields = response_field_dict[response_type]
response_object = self.gen_response_object()
response_object["VocabularyState"] = self.status
return {
k: v
for k, v in response_object.items()
if k in response_fields and v is not None and v != [None]
}
def advance(self) -> None:
old_status = self.status
super().advance()
new_status = self.status
if old_status != new_status:
self.last_modified_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
class FakeMedicalTranscriptionJob(BaseObject, ManagedState):
def __init__(
self,
region_name: str,
medical_transcription_job_name: str,
language_code: str,
media_sample_rate_hertz: Optional[int],
media_format: Optional[str],
media: Dict[str, str],
output_bucket_name: str,
output_encryption_kms_key_id: Optional[str],
settings: Optional[Dict[str, Any]],
specialty: str,
job_type: str,
):
ManagedState.__init__(
self,
"transcribe::medicaltranscriptionjob",
transitions=[
(None, "QUEUED"),
("QUEUED", "IN_PROGRESS"),
("IN_PROGRESS", "COMPLETED"),
],
)
self._region_name = region_name
self.medical_transcription_job_name = medical_transcription_job_name
self.language_code = language_code
self.media_sample_rate_hertz = media_sample_rate_hertz
self.media_format = media_format
self.media = media
self.transcript: Optional[Dict[str, str]] = None
self.start_time: Optional[str] = None
self.completion_time: Optional[str] = None
self.creation_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.failure_reason = None
self.settings = settings or {
"ChannelIdentification": False,
"ShowAlternatives": False,
}
self.specialty = specialty
self.type = job_type
self._output_bucket_name = output_bucket_name
self._output_encryption_kms_key_id = output_encryption_kms_key_id
self.output_location_type = "CUSTOMER_BUCKET"
def response_object(self, response_type: str) -> Dict[str, Any]: # type: ignore
response_field_dict = {
"CREATE": [
"MedicalTranscriptionJobName",
"TranscriptionJobStatus",
"LanguageCode",
"MediaFormat",
"Media",
"StartTime",
"CreationTime",
"Specialty",
"Type",
],
"GET": [
"MedicalTranscriptionJobName",
"TranscriptionJobStatus",
"LanguageCode",
"MediaSampleRateHertz",
"MediaFormat",
"Media",
"Transcript",
"StartTime",
"CreationTime",
"CompletionTime",
"Settings",
"Specialty",
"Type",
],
"LIST": [
"MedicalTranscriptionJobName",
"CreationTime",
"StartTime",
"CompletionTime",
"LanguageCode",
"TranscriptionJobStatus",
"FailureReason",
"OutputLocationType",
"Specialty",
"Type",
],
}
response_fields = response_field_dict[response_type]
response_object = self.gen_response_object()
response_object["TranscriptionJobStatus"] = self.status
if response_type != "LIST":
return {
"MedicalTranscriptionJob": {
k: v
for k, v in response_object.items()
if k in response_fields and v is not None and v != [None]
}
}
else:
return {
k: v
for k, v in response_object.items()
if k in response_fields and v is not None and v != [None]
}
def advance(self) -> None:
old_status = self.status
super().advance()
new_status = self.status
if old_status == new_status:
return
if new_status == "IN_PROGRESS":
self.start_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
if not self.media_sample_rate_hertz:
self.media_sample_rate_hertz = 44100
if not self.media_format:
file_ext = self.media["MediaFileUri"].split(".")[-1].lower()
self.media_format = (
file_ext if file_ext in ["mp3", "mp4", "wav", "flac"] else "mp3"
)
elif new_status == "COMPLETED":
self.completion_time = (datetime.now() + timedelta(seconds=10)).strftime(
"%Y-%m-%d %H:%M:%S"
)
self.transcript = {
"TranscriptFileUri": f"https://s3.{self._region_name}.amazonaws.com/{self._output_bucket_name}/medical/{self.medical_transcription_job_name}.json"
}
class FakeMedicalVocabulary(FakeVocabulary):
def __init__(
self,
account_id: str,
region_name: str,
vocabulary_name: str,
language_code: str,
vocabulary_file_uri: Optional[str],
):
super().__init__(
account_id,
region_name,
vocabulary_name,
language_code=language_code,
phrases=None,
vocabulary_file_uri=vocabulary_file_uri,
)
self.model_name = "transcribe::medicalvocabulary"
self._region_name = region_name
self.vocabulary_name = vocabulary_name
self.language_code = language_code
self.vocabulary_file_uri = vocabulary_file_uri
self.last_modified_time = None
self.failure_reason = None
self.download_uri = f"https://s3.us-east-1.amazonaws.com/aws-transcribe-dictionary-model-{region_name}-prod/{account_id}/medical/{self.vocabulary_name}/{mock_random.uuid4()}/input.txt"
class TranscribeBackend(BaseBackend):
def __init__(self, region_name: str, account_id: str):
super().__init__(region_name, account_id)
self.medical_transcriptions: Dict[str, FakeMedicalTranscriptionJob] = {}
self.transcriptions: Dict[str, FakeTranscriptionJob] = {}
self.medical_vocabularies: Dict[str, FakeMedicalVocabulary] = {}
self.vocabularies: Dict[str, FakeVocabulary] = {}
state_manager.register_default_transition(
"transcribe::vocabulary", transition={"progression": "manual", "times": 1}
)
state_manager.register_default_transition(
"transcribe::medicalvocabulary",
transition={"progression": "manual", "times": 1},
)
state_manager.register_default_transition(
"transcribe::transcriptionjob",
transition={"progression": "manual", "times": 1},
)
state_manager.register_default_transition(
"transcribe::medicaltranscriptionjob",
transition={"progression": "manual", "times": 1},
)
@staticmethod
def default_vpc_endpoint_service(
service_region: str, zones: List[str]
) -> List[Dict[str, str]]:
"""Default VPC endpoint services."""
return BaseBackend.default_vpc_endpoint_service_factory(
service_region, zones, "transcribe"
) + BaseBackend.default_vpc_endpoint_service_factory(
service_region, zones, "transcribestreaming"
)
def start_transcription_job(
self,
transcription_job_name: str,
language_code: Optional[str],
media_sample_rate_hertz: Optional[int],
media_format: Optional[str],
media: Dict[str, str],
output_bucket_name: Optional[str],
output_key: Optional[str],
output_encryption_kms_key_id: Optional[str],
settings: Optional[Dict[str, Any]],
model_settings: Optional[Dict[str, Optional[str]]],
job_execution_settings: Optional[Dict[str, Any]],
content_redaction: Optional[Dict[str, Any]],
identify_language: Optional[bool],
identify_multiple_languages: Optional[bool],
language_options: Optional[List[str]],
) -> Dict[str, Any]:
if transcription_job_name in self.transcriptions:
raise ConflictException(
message="The requested job name already exists. Use a different job name."
)
vocabulary_name = settings.get("VocabularyName") if settings else None
if vocabulary_name and vocabulary_name not in self.vocabularies:
raise BadRequestException(
message="The requested vocabulary couldn't be found. "
"Check the vocabulary name and try your request again."
)
transcription_job_object = FakeTranscriptionJob(
account_id=self.account_id,
region_name=self.region_name,
transcription_job_name=transcription_job_name,
language_code=language_code,
media_sample_rate_hertz=media_sample_rate_hertz,
media_format=media_format,
media=media,
output_bucket_name=output_bucket_name,
output_key=output_key,
output_encryption_kms_key_id=output_encryption_kms_key_id,
settings=settings,
model_settings=model_settings,
job_execution_settings=job_execution_settings,
content_redaction=content_redaction,
identify_language=identify_language,
identify_multiple_languages=identify_multiple_languages,
language_options=language_options,
)
self.transcriptions[transcription_job_name] = transcription_job_object
return transcription_job_object.response_object("CREATE")
def start_medical_transcription_job(
self,
medical_transcription_job_name: str,
language_code: str,
media_sample_rate_hertz: Optional[int],
media_format: Optional[str],
media: Dict[str, str],
output_bucket_name: str,
output_encryption_kms_key_id: Optional[str],
settings: Optional[Dict[str, Any]],
specialty: str,
type_: str,
) -> Dict[str, Any]:
if medical_transcription_job_name in self.medical_transcriptions:
raise ConflictException(
message="The requested job name already exists. Use a different job name."
)
vocabulary_name = settings.get("VocabularyName") if settings else None
if vocabulary_name and vocabulary_name not in self.medical_vocabularies:
raise BadRequestException(
message="The requested vocabulary couldn't be found. "
"Check the vocabulary name and try your request again."
)
transcription_job_object = FakeMedicalTranscriptionJob(
region_name=self.region_name,
medical_transcription_job_name=medical_transcription_job_name,
language_code=language_code,
media_sample_rate_hertz=media_sample_rate_hertz,
media_format=media_format,
media=media,
output_bucket_name=output_bucket_name,
output_encryption_kms_key_id=output_encryption_kms_key_id,
settings=settings,
specialty=specialty,
job_type=type_,
)
self.medical_transcriptions[
medical_transcription_job_name
] = transcription_job_object
return transcription_job_object.response_object("CREATE")
def get_transcription_job(self, transcription_job_name: str) -> Dict[str, Any]:
try:
job = self.transcriptions[transcription_job_name]
job.advance() # Fakes advancement through statuses.
return job.response_object("GET")
except KeyError:
raise BadRequestException(
message="The requested job couldn't be found. "
"Check the job name and try your request again."
)
def get_medical_transcription_job(
self, medical_transcription_job_name: str
) -> Dict[str, Any]:
try:
job = self.medical_transcriptions[medical_transcription_job_name]
job.advance() # Fakes advancement through statuses.
return job.response_object("GET")
except KeyError:
raise BadRequestException(
message="The requested job couldn't be found. "
"Check the job name and try your request again."
)
def delete_transcription_job(self, transcription_job_name: str) -> None:
try:
del self.transcriptions[transcription_job_name]
except KeyError:
raise BadRequestException(
message="The requested job couldn't be found. "
"Check the job name and try your request again."
)
def delete_medical_transcription_job(
self, medical_transcription_job_name: str
) -> None:
try:
del self.medical_transcriptions[medical_transcription_job_name]
except KeyError:
raise BadRequestException(
message="The requested job couldn't be found. "
"Check the job name and try your request again."
)
def list_transcription_jobs(
self,
state_equals: str,
job_name_contains: str,
next_token: str,
max_results: int,
) -> Dict[str, Any]:
jobs = list(self.transcriptions.values())
if state_equals:
jobs = [job for job in jobs if job.status == state_equals]
if job_name_contains:
jobs = [
job for job in jobs if job_name_contains in job.transcription_job_name
]
start_offset = int(next_token) if next_token else 0
end_offset = start_offset + (
max_results if max_results else 100
) # Arbitrarily selected...
jobs_paginated = jobs[start_offset:end_offset]
response: Dict[str, Any] = {
"TranscriptionJobSummaries": [
job.response_object("LIST") for job in jobs_paginated
]
}
if end_offset < len(jobs):
response["NextToken"] = str(end_offset)
if state_equals:
response["Status"] = state_equals
return response
def list_medical_transcription_jobs(
self, status: str, job_name_contains: str, next_token: str, max_results: int
) -> Dict[str, Any]:
jobs = list(self.medical_transcriptions.values())
if status:
jobs = [job for job in jobs if job.status == status]
if job_name_contains:
jobs = [
job
for job in jobs
if job_name_contains in job.medical_transcription_job_name
]
start_offset = int(next_token) if next_token else 0
end_offset = start_offset + (
max_results if max_results else 100
) # Arbitrarily selected...
jobs_paginated = jobs[start_offset:end_offset]
response: Dict[str, Any] = {
"MedicalTranscriptionJobSummaries": [
job.response_object("LIST") for job in jobs_paginated
]
}
if end_offset < len(jobs):
response["NextToken"] = str(end_offset)
if status:
response["Status"] = status
return response
def create_vocabulary(
self,
vocabulary_name: str,
language_code: str,
phrases: Optional[List[str]],
vocabulary_file_uri: Optional[str],
) -> Dict[str, Any]:
if (
phrases is not None
and vocabulary_file_uri is not None
or phrases is None
and vocabulary_file_uri is None
):
raise BadRequestException(
message="Either Phrases or VocabularyFileUri field should be provided."
)
if phrases is not None and len(phrases) < 1:
raise BadRequestException(
message="1 validation error detected: Value '[]' at 'phrases' failed to "
"satisfy constraint: Member must have length greater than or "
"equal to 1"
)
if vocabulary_name in self.vocabularies:
raise ConflictException(
message="The requested vocabulary name already exists. "
"Use a different vocabulary name."
)
vocabulary_object = FakeVocabulary(
account_id=self.account_id,
region_name=self.region_name,
vocabulary_name=vocabulary_name,
language_code=language_code,
phrases=phrases,
vocabulary_file_uri=vocabulary_file_uri,
)
self.vocabularies[vocabulary_name] = vocabulary_object
return vocabulary_object.response_object("CREATE")
def create_medical_vocabulary(
self,
vocabulary_name: str,
language_code: str,
vocabulary_file_uri: Optional[str],
) -> Dict[str, Any]:
if vocabulary_name in self.medical_vocabularies:
raise ConflictException(
message="The requested vocabulary name already exists. "
"Use a different vocabulary name."
)
medical_vocabulary_object = FakeMedicalVocabulary(
account_id=self.account_id,
region_name=self.region_name,
vocabulary_name=vocabulary_name,
language_code=language_code,
vocabulary_file_uri=vocabulary_file_uri,
)
self.medical_vocabularies[vocabulary_name] = medical_vocabulary_object
return medical_vocabulary_object.response_object("CREATE")
def get_vocabulary(self, vocabulary_name: str) -> Dict[str, Any]:
try:
job = self.vocabularies[vocabulary_name]
job.advance() # Fakes advancement through statuses.
return job.response_object("GET")
except KeyError:
raise BadRequestException(
message="The requested vocabulary couldn't be found. "
"Check the vocabulary name and try your request again."
)
def get_medical_vocabulary(self, vocabulary_name: str) -> Dict[str, Any]:
try:
job = self.medical_vocabularies[vocabulary_name]
job.advance() # Fakes advancement through statuses.
return job.response_object("GET")
except KeyError:
raise BadRequestException(
message="The requested vocabulary couldn't be found. "
"Check the vocabulary name and try your request again."
)
def delete_vocabulary(self, vocabulary_name: str) -> None:
try:
del self.vocabularies[vocabulary_name]
except KeyError:
raise BadRequestException(
message="The requested vocabulary couldn't be found. Check the vocabulary name and try your request again."
)
def delete_medical_vocabulary(self, vocabulary_name: str) -> None:
try:
del self.medical_vocabularies[vocabulary_name]
except KeyError:
raise BadRequestException(
message="The requested vocabulary couldn't be found. Check the vocabulary name and try your request again."
)
def list_vocabularies(
self, state_equals: str, name_contains: str, next_token: str, max_results: int
) -> Dict[str, Any]:
vocabularies = list(self.vocabularies.values())
if state_equals:
vocabularies = [
vocabulary
for vocabulary in vocabularies
if vocabulary.status == state_equals
]
if name_contains:
vocabularies = [
vocabulary
for vocabulary in vocabularies
if name_contains in vocabulary.vocabulary_name
]
start_offset = int(next_token) if next_token else 0
end_offset = start_offset + (
max_results if max_results else 100
) # Arbitrarily selected...
vocabularies_paginated = vocabularies[start_offset:end_offset]
response: Dict[str, Any] = {
"Vocabularies": [
vocabulary.response_object("LIST")
for vocabulary in vocabularies_paginated
]
}
if end_offset < len(vocabularies):
response["NextToken"] = str(end_offset)
if state_equals:
response["Status"] = state_equals
return response
def list_medical_vocabularies(
self, state_equals: str, name_contains: str, next_token: str, max_results: int
) -> Dict[str, Any]:
vocabularies = list(self.medical_vocabularies.values())
if state_equals:
vocabularies = [
vocabulary
for vocabulary in vocabularies
if vocabulary.status == state_equals
]
if name_contains:
vocabularies = [
vocabulary
for vocabulary in vocabularies
if name_contains in vocabulary.vocabulary_name
]
start_offset = int(next_token) if next_token else 0
end_offset = start_offset + (
max_results if max_results else 100
) # Arbitrarily selected...
vocabularies_paginated = vocabularies[start_offset:end_offset]
response: Dict[str, Any] = {
"Vocabularies": [
vocabulary.response_object("LIST")
for vocabulary in vocabularies_paginated
]
}
if end_offset < len(vocabularies):
response["NextToken"] = str(end_offset)
if state_equals:
response["Status"] = state_equals
return response
transcribe_backends = BackendDict(TranscribeBackend, "transcribe")