moto/tests/test_cloudwatch/test_cloudwatch_boto3.py

1587 lines
50 KiB
Python

import boto3
import pytest
import pytz
import sure # noqa # pylint: disable=unused-import
from botocore.exceptions import ClientError
from datetime import datetime, timedelta
from dateutil.tz import tzutc
from decimal import Decimal
from freezegun import freeze_time
from operator import itemgetter
from uuid import uuid4
from moto import mock_cloudwatch, mock_s3
from moto.core import DEFAULT_ACCOUNT_ID as ACCOUNT_ID
@mock_cloudwatch
def test_put_metric_data_no_dimensions():
conn = boto3.client("cloudwatch", region_name="us-east-1")
conn.put_metric_data(
Namespace="tester", MetricData=[dict(MetricName="metric", Value=1.5)]
)
metrics = conn.list_metrics()["Metrics"]
metrics.should.contain(
{"Namespace": "tester", "MetricName": "metric", "Dimensions": []}
)
@mock_cloudwatch
def test_put_metric_data_can_not_have_nan():
client = boto3.client("cloudwatch", region_name="us-west-2")
utc_now = datetime.now(tz=pytz.utc)
with pytest.raises(ClientError) as exc:
client.put_metric_data(
Namespace="mynamespace",
MetricData=[
{
"MetricName": "mymetric",
"Timestamp": utc_now,
"Value": Decimal("NaN"),
"Unit": "Count",
}
],
)
err = exc.value.response["Error"]
err["Code"].should.equal("InvalidParameterValue")
err["Message"].should.equal(
"The value NaN for parameter MetricData.member.1.Value is invalid."
)
@mock_cloudwatch
def test_put_metric_data_can_not_have_value_and_values():
client = boto3.client("cloudwatch", region_name="us-west-2")
utc_now = datetime.now(tz=pytz.utc)
with pytest.raises(ClientError) as exc:
client.put_metric_data(
Namespace="mynamespace",
MetricData=[
{
"MetricName": "mymetric",
"Timestamp": utc_now,
"Value": 1.5,
"Values": [1.0, 10.0],
"Unit": "Count",
}
],
)
err = exc.value.response["Error"]
err["Code"].should.equal("InvalidParameterValue")
err["Message"].should.equal(
"The parameters MetricData.member.1.Value and MetricData.member.1.Values are mutually exclusive and you have specified both."
)
@mock_cloudwatch
def test_put_metric_data_can_not_have_and_values_mismatched_counts():
client = boto3.client("cloudwatch", region_name="us-west-2")
utc_now = datetime.now(tz=pytz.utc)
with pytest.raises(ClientError) as exc:
client.put_metric_data(
Namespace="mynamespace",
MetricData=[
{
"MetricName": "mymetric",
"Timestamp": utc_now,
"Values": [1.0, 10.0],
"Counts": [2, 4, 1],
"Unit": "Count",
}
],
)
err = exc.value.response["Error"]
err["Code"].should.equal("InvalidParameterValue")
err["Message"].should.equal(
"The parameters MetricData.member.1.Values and MetricData.member.1.Counts must be of the same size."
)
@mock_cloudwatch
def test_put_metric_data_values_and_counts():
client = boto3.client("cloudwatch", region_name="us-west-2")
utc_now = datetime.now(tz=pytz.utc)
namespace = "values"
metric = "mymetric"
client.put_metric_data(
Namespace=namespace,
MetricData=[
{
"MetricName": metric,
"Timestamp": utc_now,
"Values": [1.0, 10.0],
"Counts": [2, 4],
}
],
)
stats = client.get_metric_statistics(
Namespace=namespace,
MetricName=metric,
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
Period=60,
Statistics=["SampleCount", "Sum", "Maximum"],
)
datapoint = stats["Datapoints"][0]
datapoint["SampleCount"].should.equal(6.0)
datapoint["Sum"].should.equal(42.0)
datapoint["Maximum"].should.equal(10.0)
@mock_cloudwatch
def test_put_metric_data_values_without_counts():
client = boto3.client("cloudwatch", region_name="us-west-2")
utc_now = datetime.now(tz=pytz.utc)
namespace = "values"
metric = "mymetric"
client.put_metric_data(
Namespace=namespace,
MetricData=[
{
"MetricName": metric,
"Timestamp": utc_now,
"Values": [1.0, 10.0, 23.45],
}
],
)
stats = client.get_metric_statistics(
Namespace=namespace,
MetricName=metric,
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
Period=60,
Statistics=["SampleCount", "Sum", "Maximum"],
)
datapoint = stats["Datapoints"][0]
datapoint["SampleCount"].should.equal(3.0)
datapoint["Sum"].should.equal(34.45)
datapoint["Maximum"].should.equal(23.45)
@mock_cloudwatch
def test_put_metric_data_with_statistics():
conn = boto3.client("cloudwatch", region_name="us-east-1")
utc_now = datetime.now(tz=pytz.utc)
conn.put_metric_data(
Namespace="tester",
MetricData=[
dict(
MetricName="statmetric",
Timestamp=utc_now,
# no Value to test https://github.com/spulec/moto/issues/1615
StatisticValues=dict(
SampleCount=123.0, Sum=123.0, Minimum=123.0, Maximum=123.0
),
Unit="Milliseconds",
StorageResolution=123,
)
],
)
metrics = conn.list_metrics()["Metrics"]
metrics.should.contain(
{"Namespace": "tester", "MetricName": "statmetric", "Dimensions": []}
)
# TODO: test statistics - https://github.com/spulec/moto/issues/1615
@mock_cloudwatch
def test_get_metric_statistics():
conn = boto3.client("cloudwatch", region_name="us-east-1")
utc_now = datetime.now(tz=pytz.utc)
conn.put_metric_data(
Namespace="tester",
MetricData=[dict(MetricName="metric", Value=1.5, Timestamp=utc_now)],
)
stats = conn.get_metric_statistics(
Namespace="tester",
MetricName="metric",
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
Period=60,
Statistics=["SampleCount", "Sum"],
)
stats["Datapoints"].should.have.length_of(1)
datapoint = stats["Datapoints"][0]
datapoint["SampleCount"].should.equal(1.0)
datapoint["Sum"].should.equal(1.5)
@mock_cloudwatch
def test_get_metric_invalid_parameter_combination():
conn = boto3.client("cloudwatch", region_name="us-east-1")
utc_now = datetime.now(tz=pytz.utc)
conn.put_metric_data(
Namespace="tester",
MetricData=[dict(MetricName="metric", Value=1.5, Timestamp=utc_now)],
)
with pytest.raises(ClientError) as exc:
# make request without both statistics or extended statistics parameters
conn.get_metric_statistics(
Namespace="tester",
MetricName="metric",
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
Period=60,
)
err = exc.value.response["Error"]
err["Code"].should.equal("InvalidParameterCombination")
err["Message"].should.equal("Must specify either Statistics or ExtendedStatistics")
@mock_cloudwatch
def test_get_metric_statistics_dimensions():
conn = boto3.client("cloudwatch", region_name="us-east-1")
utc_now = datetime.now(tz=pytz.utc)
# put metric data with different dimensions
dimensions1 = [{"Name": "dim1", "Value": "v1"}]
dimensions2 = dimensions1 + [{"Name": "dim2", "Value": "v2"}]
metric_name = "metr-stats-dims"
conn.put_metric_data(
Namespace="tester",
MetricData=[
dict(
MetricName=metric_name,
Value=1,
Timestamp=utc_now,
Dimensions=dimensions1,
)
],
)
conn.put_metric_data(
Namespace="tester",
MetricData=[
dict(
MetricName=metric_name,
Value=2,
Timestamp=utc_now,
Dimensions=dimensions1,
)
],
)
conn.put_metric_data(
Namespace="tester",
MetricData=[
dict(
MetricName=metric_name,
Value=6,
Timestamp=utc_now,
Dimensions=dimensions2,
)
],
)
# list of (<kwargs>, <expectedSum>, <expectedAverage>)
params_list = (
# get metric stats with no restriction on dimensions
({}, 9, 3),
# get metric stats for dimensions1 (should also cover dimensions2)
({"Dimensions": dimensions1}, 9, 3),
# get metric stats for dimensions2 only
({"Dimensions": dimensions2}, 6, 6),
)
for params in params_list:
stats = conn.get_metric_statistics(
Namespace="tester",
MetricName=metric_name,
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
Period=60,
Statistics=["Average", "Sum"],
**params[0],
)
stats["Datapoints"].should.have.length_of(1)
datapoint = stats["Datapoints"][0]
datapoint["Sum"].should.equal(params[1])
datapoint["Average"].should.equal(params[2])
@mock_cloudwatch
def test_duplicate_put_metric_data():
conn = boto3.client("cloudwatch", region_name="us-east-1")
utc_now = datetime.now(tz=pytz.utc)
conn.put_metric_data(
Namespace="tester",
MetricData=[
dict(
MetricName="metric",
Dimensions=[{"Name": "Name", "Value": "B"}],
Value=1.5,
Timestamp=utc_now,
)
],
)
result = conn.list_metrics(
Namespace="tester", Dimensions=[{"Name": "Name", "Value": "B"}]
)["Metrics"]
len(result).should.equal(1)
conn.put_metric_data(
Namespace="tester",
MetricData=[
dict(
MetricName="metric",
Dimensions=[{"Name": "Name", "Value": "B"}],
Value=1.5,
Timestamp=utc_now,
)
],
)
result = conn.list_metrics(
Namespace="tester", Dimensions=[{"Name": "Name", "Value": "B"}]
)["Metrics"]
len(result).should.equal(1)
result.should.equal(
[
{
"Namespace": "tester",
"MetricName": "metric",
"Dimensions": [{"Name": "Name", "Value": "B"}],
}
]
)
conn.put_metric_data(
Namespace="tester",
MetricData=[
dict(
MetricName="metric",
Dimensions=[
{"Name": "Name", "Value": "B"},
{"Name": "Name", "Value": "C"},
],
Value=1.5,
Timestamp=utc_now,
)
],
)
result = conn.list_metrics(
Namespace="tester", Dimensions=[{"Name": "Name", "Value": "B"}]
)["Metrics"]
result.should.equal(
[
{
"Namespace": "tester",
"MetricName": "metric",
"Dimensions": [{"Name": "Name", "Value": "B"}],
},
{
"Namespace": "tester",
"MetricName": "metric",
"Dimensions": [
{"Name": "Name", "Value": "B"},
{"Name": "Name", "Value": "C"},
],
},
]
)
result = conn.list_metrics(
Namespace="tester", Dimensions=[{"Name": "Name", "Value": "C"}]
)["Metrics"]
result.should.equal(
[
{
"Namespace": "tester",
"MetricName": "metric",
"Dimensions": [
{"Name": "Name", "Value": "B"},
{"Name": "Name", "Value": "C"},
],
}
]
)
@mock_cloudwatch
@freeze_time("2020-02-10 18:44:05")
def test_custom_timestamp():
utc_now = datetime.now(tz=pytz.utc)
time = "2020-02-10T18:44:09Z"
cw = boto3.client("cloudwatch", "eu-west-1")
cw.put_metric_data(
Namespace="tester",
MetricData=[dict(MetricName="metric1", Value=1.5, Timestamp=time)],
)
cw.put_metric_data(
Namespace="tester",
MetricData=[
dict(MetricName="metric2", Value=1.5, Timestamp=datetime(2020, 2, 10))
],
)
cw.get_metric_statistics(
Namespace="tester",
MetricName="metric",
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
Period=60,
Statistics=["SampleCount", "Sum"],
)
# TODO: What are we actually testing here?
@mock_cloudwatch
def test_list_metrics():
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
# Verify namespace has to exist
res = cloudwatch.list_metrics(Namespace="unknown/")["Metrics"]
res.should.equal([])
# Create some metrics to filter on
create_metrics(cloudwatch, namespace="list_test_1/", metrics=4, data_points=2)
create_metrics(cloudwatch, namespace="list_test_2/", metrics=4, data_points=2)
# Verify we can retrieve everything
res = cloudwatch.list_metrics()["Metrics"]
assert len(res) >= 16 # 2 namespaces * 4 metrics * 2 data points
# Verify we can filter by namespace/metric name
res = cloudwatch.list_metrics(Namespace="list_test_1/")["Metrics"]
res.should.have.length_of(8) # 1 namespace * 4 metrics * 2 data points
res = cloudwatch.list_metrics(Namespace="list_test_1/", MetricName="metric1")[
"Metrics"
]
res.should.have.length_of(2) # 1 namespace * 1 metrics * 2 data points
# Verify format
res.should.equal(
[
{"Namespace": "list_test_1/", "Dimensions": [], "MetricName": "metric1"},
{"Namespace": "list_test_1/", "Dimensions": [], "MetricName": "metric1"},
]
)
# Verify unknown namespace still has no results
res = cloudwatch.list_metrics(Namespace="unknown/")["Metrics"]
res.should.equal([])
@mock_cloudwatch
def test_list_metrics_paginated():
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
# Verify that only a single page of metrics is returned
cloudwatch.list_metrics().shouldnt.have.key("NextToken")
# Verify we can't pass a random NextToken
with pytest.raises(ClientError) as e:
cloudwatch.list_metrics(NextToken=str(uuid4()))
e.value.response["Error"]["Message"].should.equal(
"Request parameter NextToken is invalid"
)
# Add a boatload of metrics
create_metrics(cloudwatch, namespace="test", metrics=100, data_points=1)
# Verify that a single page is returned until we've reached 500
first_page = cloudwatch.list_metrics(Namespace="test")
first_page["Metrics"].should.have.length_of(100)
len(first_page["Metrics"]).should.equal(100)
create_metrics(cloudwatch, namespace="test", metrics=200, data_points=2)
first_page = cloudwatch.list_metrics(Namespace="test")
len(first_page["Metrics"]).should.equal(500)
first_page.shouldnt.contain("NextToken")
# Verify that adding more data points results in pagination
create_metrics(cloudwatch, namespace="test", metrics=60, data_points=10)
first_page = cloudwatch.list_metrics(Namespace="test")
len(first_page["Metrics"]).should.equal(500)
first_page["NextToken"].shouldnt.equal(None)
# Retrieve second page - and verify there's more where that came from
second_page = cloudwatch.list_metrics(
Namespace="test", NextToken=first_page["NextToken"]
)
len(second_page["Metrics"]).should.equal(500)
second_page.should.contain("NextToken")
# Last page should only have the last 100 results, and no NextToken (indicating that pagination is finished)
third_page = cloudwatch.list_metrics(
Namespace="test", NextToken=second_page["NextToken"]
)
len(third_page["Metrics"]).should.equal(100)
third_page.shouldnt.contain("NextToken")
# Verify that we can't reuse an existing token
with pytest.raises(ClientError) as e:
cloudwatch.list_metrics(Namespace="test", NextToken=first_page["NextToken"])
e.value.response["Error"]["Message"].should.equal(
"Request parameter NextToken is invalid"
)
@mock_cloudwatch
def test_list_metrics_without_value():
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
# Create some metrics to filter on
create_metrics_with_dimensions(cloudwatch, namespace="MyNamespace", data_points=3)
# Verify we can filter by namespace/metric name
res = cloudwatch.list_metrics(Namespace="MyNamespace")["Metrics"]
res.should.have.length_of(3)
# Verify we can filter by Dimension without value
results = cloudwatch.list_metrics(
Namespace="MyNamespace", MetricName="MyMetric", Dimensions=[{"Name": "D1"}]
)["Metrics"]
results.should.have.length_of(1)
results[0]["Namespace"].should.equals("MyNamespace")
results[0]["MetricName"].should.equal("MyMetric")
results[0]["Dimensions"].should.equal([{"Name": "D1", "Value": "V1"}])
@mock_cloudwatch
def test_list_metrics_with_same_dimensions_different_metric_name():
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
# create metrics with same namespace and dimensions but different metric names
cloudwatch.put_metric_data(
Namespace="unique/",
MetricData=[
{
"MetricName": "metric1",
"Dimensions": [{"Name": "D1", "Value": "V1"}],
"Unit": "Seconds",
}
],
)
cloudwatch.put_metric_data(
Namespace="unique/",
MetricData=[
{
"MetricName": "metric2",
"Dimensions": [{"Name": "D1", "Value": "V1"}],
"Unit": "Seconds",
}
],
)
results = cloudwatch.list_metrics(Namespace="unique/")["Metrics"]
results.should.have.length_of(2)
# duplicating existing metric
cloudwatch.put_metric_data(
Namespace="unique/",
MetricData=[
{
"MetricName": "metric1",
"Dimensions": [{"Name": "D1", "Value": "V1"}],
"Unit": "Seconds",
}
],
)
# asserting only unique values are returned
results = cloudwatch.list_metrics(Namespace="unique/")["Metrics"]
results.should.have.length_of(2)
def create_metrics(cloudwatch, namespace, metrics=5, data_points=5):
for i in range(0, metrics):
metric_name = "metric" + str(i)
for j in range(0, data_points):
cloudwatch.put_metric_data(
Namespace=namespace,
MetricData=[{"MetricName": metric_name, "Value": j, "Unit": "Seconds"}],
)
def create_metrics_with_dimensions(cloudwatch, namespace, data_points=5):
for j in range(0, data_points):
cloudwatch.put_metric_data(
Namespace=namespace,
MetricData=[
{
"MetricName": "MyMetric",
"Dimensions": [{"Name": f"D{j}", "Value": f"V{j}"}],
"Unit": "Seconds",
}
],
)
@mock_cloudwatch
def test_get_metric_data_for_multiple_metrics_w_same_dimensions():
utc_now = datetime.now(tz=pytz.utc)
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
namespace = "my_namespace/"
cloudwatch.put_metric_data(
Namespace=namespace,
MetricData=[
{
"MetricName": "metric1",
"Dimensions": [{"Name": "Name", "Value": "B"}],
"Value": 50,
},
{
"MetricName": "metric2",
"Dimensions": [{"Name": "Name", "Value": "B"}],
"Value": 25,
"Unit": "Microseconds",
},
],
)
# get_metric_data 1
response1 = cloudwatch.get_metric_data(
MetricDataQueries=[
{
"Id": "result1",
"MetricStat": {
"Metric": {
"Namespace": namespace,
"MetricName": "metric1",
"Dimensions": [{"Name": "Name", "Value": "B"}],
},
"Period": 60,
"Stat": "Sum",
},
},
],
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
)
#
len(response1["MetricDataResults"]).should.equal(1)
res1 = response1["MetricDataResults"][0]
res1["Values"].should.equal([50.0])
# get_metric_data 2
response2 = cloudwatch.get_metric_data(
MetricDataQueries=[
{
"Id": "result2",
"MetricStat": {
"Metric": {
"Namespace": namespace,
"MetricName": "metric2",
"Dimensions": [{"Name": "Name", "Value": "B"}],
},
"Period": 60,
"Stat": "Sum",
},
},
],
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
)
#
len(response2["MetricDataResults"]).should.equal(1)
res2 = response2["MetricDataResults"][0]
res2["Values"].should.equal([25.0])
@mock_cloudwatch
def test_get_metric_data_within_timeframe():
utc_now = datetime.now(tz=pytz.utc)
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
namespace1 = "my_namespace/"
# put metric data
values = [0, 2, 4, 3.5, 7, 100]
cloudwatch.put_metric_data(
Namespace=namespace1,
MetricData=[
{"MetricName": "metric1", "Value": val, "Unit": "Seconds"} for val in values
],
)
# get_metric_data
stats = ["Average", "Sum", "Minimum", "Maximum"]
response = cloudwatch.get_metric_data(
MetricDataQueries=[
{
"Id": "result_" + stat,
"MetricStat": {
"Metric": {"Namespace": namespace1, "MetricName": "metric1"},
"Period": 60,
"Stat": stat,
},
}
for stat in stats
],
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
)
#
# Assert Average/Min/Max/Sum is returned as expected
avg = [
res for res in response["MetricDataResults"] if res["Id"] == "result_Average"
][0]
avg["Label"].should.equal("metric1 Average")
avg["StatusCode"].should.equal("Complete")
[int(val) for val in avg["Values"]].should.equal([19])
sum_ = [res for res in response["MetricDataResults"] if res["Id"] == "result_Sum"][
0
]
sum_["Label"].should.equal("metric1 Sum")
sum_["StatusCode"].should.equal("Complete")
[val for val in sum_["Values"]].should.equal([sum(values)])
min_ = [
res for res in response["MetricDataResults"] if res["Id"] == "result_Minimum"
][0]
min_["Label"].should.equal("metric1 Minimum")
min_["StatusCode"].should.equal("Complete")
[int(val) for val in min_["Values"]].should.equal([0])
max_ = [
res for res in response["MetricDataResults"] if res["Id"] == "result_Maximum"
][0]
max_["Label"].should.equal("metric1 Maximum")
max_["StatusCode"].should.equal("Complete")
[int(val) for val in max_["Values"]].should.equal([100])
@mock_cloudwatch
def test_get_metric_data_partially_within_timeframe():
utc_now = datetime.now(tz=pytz.utc)
yesterday = utc_now - timedelta(days=1)
last_week = utc_now - timedelta(days=7)
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
namespace1 = "my_namespace/"
# put metric data
cloudwatch.put_metric_data(
Namespace=namespace1,
MetricData=[
{
"MetricName": "metric1",
"Value": 10,
"Unit": "Seconds",
"Timestamp": utc_now,
}
],
)
cloudwatch.put_metric_data(
Namespace=namespace1,
MetricData=[
{
"MetricName": "metric1",
"Value": 20,
"Unit": "Seconds",
"Timestamp": yesterday,
}
],
)
cloudwatch.put_metric_data(
Namespace=namespace1,
MetricData=[
{
"MetricName": "metric1",
"Value": 50,
"Unit": "Seconds",
"Timestamp": last_week,
},
{
"MetricName": "metric1",
"Value": 10,
"Unit": "Seconds",
"Timestamp": last_week + timedelta(seconds=10),
},
{
"MetricName": "metric1",
"Value": 20,
"Unit": "Seconds",
"Timestamp": last_week + timedelta(seconds=15),
},
{
"MetricName": "metric1",
"Value": 40,
"Unit": "Seconds",
"Timestamp": last_week + timedelta(seconds=30),
},
],
)
# data for average, min, max
def get_data(start, end, stat="Sum", scanBy="TimestampAscending"):
# get_metric_data
response = cloudwatch.get_metric_data(
MetricDataQueries=[
{
"Id": "result",
"MetricStat": {
"Metric": {"Namespace": namespace1, "MetricName": "metric1"},
"Period": 60,
"Stat": stat,
},
}
],
StartTime=start,
EndTime=end,
ScanBy=scanBy,
)
return response
response = get_data(
start=yesterday - timedelta(seconds=60), end=utc_now + timedelta(seconds=60)
)
# Assert Last week's data is not returned
len(response["MetricDataResults"]).should.equal(1)
sum_ = response["MetricDataResults"][0]
sum_["Label"].should.equal("metric1 Sum")
sum_["StatusCode"].should.equal("Complete")
sum_["Values"].should.equal([20.0, 10.0])
response = get_data(
start=yesterday - timedelta(seconds=60),
end=utc_now + timedelta(seconds=60),
scanBy="TimestampDescending",
)
response["MetricDataResults"][0]["Values"].should.equal([10.0, 20.0])
response = get_data(
start=last_week - timedelta(seconds=1),
end=utc_now + timedelta(seconds=60),
stat="Average",
)
# assert average
response["MetricDataResults"][0]["Values"].should.equal([30.0, 20.0, 10.0])
response = get_data(
start=last_week - timedelta(seconds=1),
end=utc_now + timedelta(seconds=60),
stat="Maximum",
)
# assert maximum
response["MetricDataResults"][0]["Values"].should.equal([50.0, 20.0, 10.0])
response = get_data(
start=last_week - timedelta(seconds=1),
end=utc_now + timedelta(seconds=60),
stat="Minimum",
)
# assert minimum
response["MetricDataResults"][0]["Values"].should.equal([10.0, 20.0, 10.0])
@mock_cloudwatch
def test_get_metric_data_outside_timeframe():
utc_now = datetime.now(tz=pytz.utc)
last_week = utc_now - timedelta(days=7)
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
namespace1 = "my_namespace/"
# put metric data
cloudwatch.put_metric_data(
Namespace=namespace1,
MetricData=[
{
"MetricName": "metric1",
"Value": 50,
"Unit": "Seconds",
"Timestamp": last_week,
}
],
)
# get_metric_data
response = cloudwatch.get_metric_data(
MetricDataQueries=[
{
"Id": "result",
"MetricStat": {
"Metric": {"Namespace": namespace1, "MetricName": "metric1"},
"Period": 60,
"Stat": "Sum",
},
}
],
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
)
#
# Assert Last week's data is not returned
len(response["MetricDataResults"]).should.equal(1)
response["MetricDataResults"][0]["Id"].should.equal("result")
response["MetricDataResults"][0]["StatusCode"].should.equal("Complete")
response["MetricDataResults"][0]["Values"].should.equal([])
@mock_cloudwatch
def test_get_metric_data_for_multiple_metrics():
utc_now = datetime.now(tz=pytz.utc)
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
namespace = "my_namespace/"
# put metric data
cloudwatch.put_metric_data(
Namespace=namespace,
MetricData=[
{
"MetricName": "metric1",
"Value": 50,
"Unit": "Seconds",
"Timestamp": utc_now,
}
],
)
cloudwatch.put_metric_data(
Namespace=namespace,
MetricData=[
{
"MetricName": "metric2",
"Value": 25,
"Unit": "Seconds",
"Timestamp": utc_now,
}
],
)
# get_metric_data
response = cloudwatch.get_metric_data(
MetricDataQueries=[
{
"Id": "result1",
"MetricStat": {
"Metric": {"Namespace": namespace, "MetricName": "metric1"},
"Period": 60,
"Stat": "Sum",
},
},
{
"Id": "result2",
"MetricStat": {
"Metric": {"Namespace": namespace, "MetricName": "metric2"},
"Period": 60,
"Stat": "Sum",
},
},
],
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
)
#
len(response["MetricDataResults"]).should.equal(2)
res1 = [res for res in response["MetricDataResults"] if res["Id"] == "result1"][0]
res1["Values"].should.equal([50.0])
res2 = [res for res in response["MetricDataResults"] if res["Id"] == "result2"][0]
res2["Values"].should.equal([25.0])
@mock_cloudwatch
def test_get_metric_data_for_dimensions():
utc_now = datetime.now(tz=pytz.utc)
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
namespace = "my_namespace/"
# If the metric is created with multiple dimensions, then the data points for that metric can be retrieved only by specifying all the configured dimensions.
# https://aws.amazon.com/premiumsupport/knowledge-center/cloudwatch-getmetricstatistics-data/
server_prod = {"Name": "Server", "Value": "Prod"}
dimension_berlin = [server_prod, {"Name": "Domain", "Value": "Berlin"}]
dimension_frankfurt = [server_prod, {"Name": "Domain", "Value": "Frankfurt"}]
# put metric data
cloudwatch.put_metric_data(
Namespace=namespace,
MetricData=[
{
"MetricName": "metric1",
"Value": 50,
"Dimensions": dimension_berlin,
"Unit": "Seconds",
"Timestamp": utc_now,
}
],
)
cloudwatch.put_metric_data(
Namespace=namespace,
MetricData=[
{
"MetricName": "metric1",
"Value": 25,
"Unit": "Seconds",
"Dimensions": dimension_frankfurt,
"Timestamp": utc_now,
}
],
)
# get_metric_data
response = cloudwatch.get_metric_data(
MetricDataQueries=[
{
"Id": "result1",
"MetricStat": {
"Metric": {
"Namespace": namespace,
"MetricName": "metric1",
"Dimensions": dimension_frankfurt,
},
"Period": 60,
"Stat": "SampleCount",
},
},
{
"Id": "result2",
"MetricStat": {
"Metric": {
"Namespace": namespace,
"MetricName": "metric1",
"Dimensions": dimension_berlin,
},
"Period": 60,
"Stat": "Sum",
},
},
{
"Id": "result3",
"MetricStat": {
"Metric": {
"Namespace": namespace,
"MetricName": "metric1",
"Dimensions": [server_prod],
},
"Period": 60,
"Stat": "Sum",
},
},
{
"Id": "result4",
"MetricStat": {
"Metric": {"Namespace": namespace, "MetricName": "metric1"},
"Period": 60,
"Stat": "Sum",
},
},
],
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
)
#
len(response["MetricDataResults"]).should.equal(4)
res1 = [res for res in response["MetricDataResults"] if res["Id"] == "result1"][0]
# expect sample count for dimension_frankfurt
res1["Values"].should.equal([1.0])
res2 = [res for res in response["MetricDataResults"] if res["Id"] == "result2"][0]
# expect sum for dimension_berlin
res2["Values"].should.equal([50.0])
res3 = [res for res in response["MetricDataResults"] if res["Id"] == "result3"][0]
# expect no result, as server_prod is only a part of other dimensions, e.g. there is no match
res3["Values"].should.equal([])
res4 = [res for res in response["MetricDataResults"] if res["Id"] == "result4"][0]
# expect sum of both metrics, as we did not filter for dimensions
res4["Values"].should.equal([75.0])
@mock_cloudwatch
def test_get_metric_data_for_unit():
utc_now = datetime.now(tz=pytz.utc)
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
namespace = "my_namespace/"
unit = "Seconds"
# put metric data
cloudwatch.put_metric_data(
Namespace=namespace,
MetricData=[
{
"MetricName": "metric1",
"Value": 50,
"Unit": unit,
"Timestamp": utc_now,
},
{
"MetricName": "metric1",
"Value": -50,
"Timestamp": utc_now,
},
],
)
# get_metric_data
response = cloudwatch.get_metric_data(
MetricDataQueries=[
{
"Id": "result_without_unit",
"MetricStat": {
"Metric": {
"Namespace": namespace,
"MetricName": "metric1",
},
"Period": 60,
"Stat": "SampleCount",
},
},
{
"Id": "result_with_unit",
"MetricStat": {
"Metric": {
"Namespace": namespace,
"MetricName": "metric1",
},
"Period": 60,
"Stat": "SampleCount",
"Unit": unit,
},
},
],
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
)
expected_values = {
"result_without_unit": 2.0,
"result_with_unit": 1.0,
}
for id_, expected_value in expected_values.items():
metric_result_data = list(
filter(
lambda result_data: result_data["Id"] == id_,
response["MetricDataResults"],
)
)
len(metric_result_data).should.equal(1)
metric_result_data[0]["Values"][0].should.equal(expected_value)
@mock_cloudwatch
@mock_s3
def test_cloudwatch_return_s3_metrics():
utc_now = datetime.now(tz=pytz.utc)
bucket_name = "examplebucket"
cloudwatch = boto3.client("cloudwatch", "eu-west-3")
# given
s3 = boto3.resource("s3")
s3_client = boto3.client("s3")
bucket = s3.Bucket(bucket_name)
bucket.create(CreateBucketConfiguration={"LocationConstraint": "eu-west-3"})
bucket.put_object(Body=b"ABCD", Key="file.txt")
# when
metrics = cloudwatch.list_metrics(
Dimensions=[{"Name": "BucketName", "Value": bucket_name}]
)["Metrics"]
# then
metrics.should.have.length_of(2)
metrics.should.contain(
{
"Namespace": "AWS/S3",
"MetricName": "NumberOfObjects",
"Dimensions": [
{"Name": "StorageType", "Value": "AllStorageTypes"},
{"Name": "BucketName", "Value": bucket_name},
],
}
)
metrics.should.contain(
{
"Namespace": "AWS/S3",
"MetricName": "BucketSizeBytes",
"Dimensions": [
{"Name": "StorageType", "Value": "StandardStorage"},
{"Name": "BucketName", "Value": bucket_name},
],
}
)
# when
stats = cloudwatch.get_metric_statistics(
Namespace="AWS/S3",
MetricName="BucketSizeBytes",
Dimensions=[
{"Name": "BucketName", "Value": bucket_name},
{"Name": "StorageType", "Value": "StandardStorage"},
],
StartTime=utc_now - timedelta(days=2),
EndTime=utc_now,
Period=86400,
Statistics=["Average"],
Unit="Bytes",
)
# then
stats.should.have.key("Label").equal("BucketSizeBytes")
stats.should.have.key("Datapoints").length_of(1)
data_point = stats["Datapoints"][0]
data_point.should.have.key("Average").being.above(0)
data_point.should.have.key("Unit").being.equal("Bytes")
# when
stats = cloudwatch.get_metric_statistics(
Namespace="AWS/S3",
MetricName="NumberOfObjects",
Dimensions=[
{"Name": "BucketName", "Value": bucket_name},
{"Name": "StorageType", "Value": "AllStorageTypes"},
],
StartTime=utc_now - timedelta(days=2),
EndTime=utc_now,
Period=86400,
Statistics=["Average"],
)
# then
stats.should.have.key("Label").equal("NumberOfObjects")
stats.should.have.key("Datapoints").length_of(1)
data_point = stats["Datapoints"][0]
data_point.should.have.key("Average").being.equal(1)
data_point.should.have.key("Unit").being.equal("Count")
s3_client.delete_object(Bucket=bucket_name, Key="file.txt")
s3_client.delete_bucket(Bucket=bucket_name)
@mock_cloudwatch
def test_put_metric_alarm():
# given
region_name = "eu-central-1"
client = boto3.client("cloudwatch", region_name=region_name)
alarm_name = "test-alarm"
sns_topic_arn = f"arn:aws:sns:${region_name}:${ACCOUNT_ID}:test-topic"
# when
client.put_metric_alarm(
AlarmName=alarm_name,
AlarmDescription="test alarm",
ActionsEnabled=True,
OKActions=[sns_topic_arn],
AlarmActions=[sns_topic_arn],
InsufficientDataActions=[sns_topic_arn],
MetricName="5XXError",
Namespace="AWS/ApiGateway",
Statistic="Sum",
Dimensions=[
{"Name": "ApiName", "Value": "test-api"},
{"Name": "Stage", "Value": "default"},
],
Period=60,
Unit="Seconds",
EvaluationPeriods=1,
DatapointsToAlarm=1,
Threshold=1.0,
ComparisonOperator="GreaterThanOrEqualToThreshold",
TreatMissingData="notBreaching",
Tags=[{"Key": "key-1", "Value": "value-1"}],
)
# then
alarms = client.describe_alarms(AlarmNames=[alarm_name])["MetricAlarms"]
alarms.should.have.length_of(1)
alarm = alarms[0]
alarm["AlarmName"].should.equal(alarm_name)
alarm["AlarmArn"].should.equal(
f"arn:aws:cloudwatch:{region_name}:{ACCOUNT_ID}:alarm:{alarm_name}"
)
alarm["AlarmDescription"].should.equal("test alarm")
alarm["AlarmConfigurationUpdatedTimestamp"].should.be.a(datetime)
alarm["AlarmConfigurationUpdatedTimestamp"].tzinfo.should.equal(tzutc())
alarm["ActionsEnabled"].should.equal(True)
alarm["OKActions"].should.equal([sns_topic_arn])
alarm["AlarmActions"].should.equal([sns_topic_arn])
alarm["InsufficientDataActions"].should.equal([sns_topic_arn])
alarm["StateValue"].should.equal("OK")
alarm["StateReason"].should.equal("Unchecked: Initial alarm creation")
alarm["StateUpdatedTimestamp"].should.be.a(datetime)
alarm["StateUpdatedTimestamp"].tzinfo.should.equal(tzutc())
alarm["MetricName"].should.equal("5XXError")
alarm["Namespace"].should.equal("AWS/ApiGateway")
alarm["Statistic"].should.equal("Sum")
sorted(alarm["Dimensions"], key=itemgetter("Name")).should.equal(
sorted(
[
{"Name": "ApiName", "Value": "test-api"},
{"Name": "Stage", "Value": "default"},
],
key=itemgetter("Name"),
)
)
alarm["Period"].should.equal(60)
alarm["Unit"].should.equal("Seconds")
alarm["EvaluationPeriods"].should.equal(1)
alarm["DatapointsToAlarm"].should.equal(1)
alarm["Threshold"].should.equal(1.0)
alarm["ComparisonOperator"].should.equal("GreaterThanOrEqualToThreshold")
alarm["TreatMissingData"].should.equal("notBreaching")
@mock_cloudwatch
def test_put_metric_alarm_with_percentile():
# given
region_name = "eu-central-1"
client = boto3.client("cloudwatch", region_name=region_name)
alarm_name = "test-alarm"
# when
client.put_metric_alarm(
AlarmName=alarm_name,
AlarmDescription="test alarm",
ActionsEnabled=True,
MetricName="5XXError",
Namespace="AWS/ApiGateway",
ExtendedStatistic="p90",
Dimensions=[
{"Name": "ApiName", "Value": "test-api"},
{"Name": "Stage", "Value": "default"},
],
Period=60,
Unit="Seconds",
EvaluationPeriods=1,
DatapointsToAlarm=1,
Threshold=1.0,
ComparisonOperator="GreaterThanOrEqualToThreshold",
TreatMissingData="notBreaching",
EvaluateLowSampleCountPercentile="ignore",
)
# then
alarms = client.describe_alarms(AlarmNames=[alarm_name])["MetricAlarms"]
alarms.should.have.length_of(1)
alarm = alarms[0]
alarm["AlarmName"].should.equal(alarm_name)
alarm["AlarmArn"].should.equal(
f"arn:aws:cloudwatch:{region_name}:{ACCOUNT_ID}:alarm:{alarm_name}"
)
alarm["AlarmDescription"].should.equal("test alarm")
alarm["AlarmConfigurationUpdatedTimestamp"].should.be.a(datetime)
alarm["AlarmConfigurationUpdatedTimestamp"].tzinfo.should.equal(tzutc())
alarm["ActionsEnabled"].should.equal(True)
alarm["StateValue"].should.equal("OK")
alarm["StateReason"].should.equal("Unchecked: Initial alarm creation")
alarm["StateUpdatedTimestamp"].should.be.a(datetime)
alarm["StateUpdatedTimestamp"].tzinfo.should.equal(tzutc())
alarm["MetricName"].should.equal("5XXError")
alarm["Namespace"].should.equal("AWS/ApiGateway")
alarm["ExtendedStatistic"].should.equal("p90")
sorted(alarm["Dimensions"], key=itemgetter("Name")).should.equal(
sorted(
[
{"Name": "ApiName", "Value": "test-api"},
{"Name": "Stage", "Value": "default"},
],
key=itemgetter("Name"),
)
)
alarm["Period"].should.equal(60)
alarm["Unit"].should.equal("Seconds")
alarm["EvaluationPeriods"].should.equal(1)
alarm["DatapointsToAlarm"].should.equal(1)
alarm["Threshold"].should.equal(1.0)
alarm["ComparisonOperator"].should.equal("GreaterThanOrEqualToThreshold")
alarm["TreatMissingData"].should.equal("notBreaching")
alarm["EvaluateLowSampleCountPercentile"].should.equal("ignore")
@mock_cloudwatch
def test_put_metric_alarm_with_anomaly_detection():
# given
region_name = "eu-central-1"
client = boto3.client("cloudwatch", region_name=region_name)
alarm_name = "test-alarm"
metrics = [
{
"Id": "m1",
"ReturnData": True,
"MetricStat": {
"Metric": {
"MetricName": "CPUUtilization",
"Namespace": "AWS/EC2",
"Dimensions": [
{"Name": "instanceId", "Value": "i-1234567890abcdef0"}
],
},
"Stat": "Average",
"Period": 60,
},
},
{
"Id": "t1",
"ReturnData": False,
"Expression": "ANOMALY_DETECTION_BAND(m1, 3)",
},
]
# when
client.put_metric_alarm(
AlarmName=alarm_name,
ActionsEnabled=True,
Metrics=metrics,
EvaluationPeriods=2,
ComparisonOperator="GreaterThanOrEqualToThreshold",
ThresholdMetricId="t1",
)
# then
alarms = client.describe_alarms(AlarmNames=[alarm_name])["MetricAlarms"]
alarms.should.have.length_of(1)
alarm = alarms[0]
alarm["AlarmName"].should.equal(alarm_name)
alarm["AlarmArn"].should.equal(
f"arn:aws:cloudwatch:{region_name}:{ACCOUNT_ID}:alarm:{alarm_name}"
)
alarm["AlarmConfigurationUpdatedTimestamp"].should.be.a(datetime)
alarm["AlarmConfigurationUpdatedTimestamp"].tzinfo.should.equal(tzutc())
alarm["StateValue"].should.equal("OK")
alarm["StateReason"].should.equal("Unchecked: Initial alarm creation")
alarm["StateUpdatedTimestamp"].should.be.a(datetime)
alarm["StateUpdatedTimestamp"].tzinfo.should.equal(tzutc())
alarm["EvaluationPeriods"].should.equal(2)
alarm["ComparisonOperator"].should.equal("GreaterThanOrEqualToThreshold")
alarm["Metrics"].should.equal(metrics)
alarm["ThresholdMetricId"].should.equal("t1")
@mock_cloudwatch
def test_put_metric_alarm_error_extended_statistic():
# given
region_name = "eu-central-1"
client = boto3.client("cloudwatch", region_name=region_name)
alarm_name = "test-alarm"
# when
with pytest.raises(ClientError) as e:
client.put_metric_alarm(
AlarmName=alarm_name,
ActionsEnabled=True,
MetricName="5XXError",
Namespace="AWS/ApiGateway",
ExtendedStatistic="90",
Dimensions=[
{"Name": "ApiName", "Value": "test-api"},
{"Name": "Stage", "Value": "default"},
],
Period=60,
Unit="Seconds",
EvaluationPeriods=1,
DatapointsToAlarm=1,
Threshold=1.0,
ComparisonOperator="GreaterThanOrEqualToThreshold",
TreatMissingData="notBreaching",
)
# then
ex = e.value
ex.operation_name.should.equal("PutMetricAlarm")
ex.response["ResponseMetadata"]["HTTPStatusCode"].should.equal(400)
ex.response["Error"]["Code"].should.contain("InvalidParameterValue")
ex.response["Error"]["Message"].should.equal(
"The value 90 for parameter ExtendedStatistic is not supported."
)
@mock_cloudwatch
def test_put_metric_alarm_error_evaluate_low_sample_count_percentile():
# given
region_name = "eu-central-1"
client = boto3.client("cloudwatch", region_name=region_name)
alarm_name = "test-alarm"
# when
with pytest.raises(ClientError) as e:
client.put_metric_alarm(
AlarmName=alarm_name,
ActionsEnabled=True,
MetricName="5XXError",
Namespace="AWS/ApiGateway",
ExtendedStatistic="p90",
Dimensions=[
{"Name": "ApiName", "Value": "test-api"},
{"Name": "Stage", "Value": "default"},
],
Period=60,
Unit="Seconds",
EvaluationPeriods=1,
DatapointsToAlarm=1,
Threshold=1.0,
ComparisonOperator="GreaterThanOrEqualToThreshold",
TreatMissingData="notBreaching",
EvaluateLowSampleCountPercentile="unknown",
)
# then
ex = e.value
ex.operation_name.should.equal("PutMetricAlarm")
ex.response["ResponseMetadata"]["HTTPStatusCode"].should.equal(400)
ex.response["Error"]["Code"].should.contain("ValidationError")
ex.response["Error"]["Message"].should.equal(
"Option unknown is not supported. "
"Supported options for parameter EvaluateLowSampleCountPercentile are evaluate and ignore."
)
@mock_cloudwatch
def test_get_metric_data_with_custom_label():
utc_now = datetime.now(tz=pytz.utc)
cloudwatch = boto3.client("cloudwatch", "eu-west-1")
namespace = "my_namespace/"
label = "MyCustomLabel"
# put metric data
cloudwatch.put_metric_data(
Namespace=namespace,
MetricData=[
{
"MetricName": "metric1",
"Value": 50,
"Timestamp": utc_now,
},
{
"MetricName": "metric1",
"Value": -50,
"Timestamp": utc_now,
},
],
)
# get_metric_data
response = cloudwatch.get_metric_data(
MetricDataQueries=[
{
"Id": "result_without_custom_label",
"MetricStat": {
"Metric": {
"Namespace": namespace,
"MetricName": "metric1",
},
"Period": 60,
"Stat": "SampleCount",
},
},
{
"Id": "result_with_custom_label",
"Label": label,
"MetricStat": {
"Metric": {
"Namespace": namespace,
"MetricName": "metric1",
},
"Period": 60,
"Stat": "SampleCount",
},
},
],
StartTime=utc_now - timedelta(seconds=60),
EndTime=utc_now + timedelta(seconds=60),
)
expected_values = {
"result_without_custom_label": "metric1 SampleCount",
"result_with_custom_label": label,
}
for id_, expected_value in expected_values.items():
metric_result_data = list(
filter(
lambda result_data: result_data["Id"] == id_,
response["MetricDataResults"],
)
)
len(metric_result_data).should.equal(1)
metric_result_data[0]["Label"].should.equal(expected_value)