moto/tests/test_sagemaker/test_sagemaker_endpoint.py
2020-11-10 14:12:38 +01:00

234 lines
7.9 KiB
Python

# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import datetime
import boto3
from botocore.exceptions import ClientError
import sure # noqa
from moto import mock_sagemaker
from moto.sts.models import ACCOUNT_ID
import pytest
TEST_REGION_NAME = "us-east-1"
FAKE_ROLE_ARN = "arn:aws:iam::{}:role/FakeRole".format(ACCOUNT_ID)
GENERIC_TAGS_PARAM = [
{"Key": "newkey1", "Value": "newval1"},
{"Key": "newkey2", "Value": "newval2"},
]
@mock_sagemaker
def test_create_endpoint_config():
sagemaker = boto3.client("sagemaker", region_name=TEST_REGION_NAME)
model_name = "MyModel"
production_variants = [
{
"VariantName": "MyProductionVariant",
"ModelName": model_name,
"InitialInstanceCount": 1,
"InstanceType": "ml.t2.medium",
},
]
endpoint_config_name = "MyEndpointConfig"
with pytest.raises(ClientError) as e:
sagemaker.create_endpoint_config(
EndpointConfigName=endpoint_config_name,
ProductionVariants=production_variants,
)
assert e.value.response["Error"]["Message"].startswith("Could not find model")
_create_model(sagemaker, model_name)
resp = sagemaker.create_endpoint_config(
EndpointConfigName=endpoint_config_name, ProductionVariants=production_variants
)
resp["EndpointConfigArn"].should.match(
r"^arn:aws:sagemaker:.*:.*:endpoint-config/{}$".format(endpoint_config_name)
)
resp = sagemaker.describe_endpoint_config(EndpointConfigName=endpoint_config_name)
resp["EndpointConfigArn"].should.match(
r"^arn:aws:sagemaker:.*:.*:endpoint-config/{}$".format(endpoint_config_name)
)
resp["EndpointConfigName"].should.equal(endpoint_config_name)
resp["ProductionVariants"].should.equal(production_variants)
@mock_sagemaker
def test_delete_endpoint_config():
sagemaker = boto3.client("sagemaker", region_name=TEST_REGION_NAME)
model_name = "MyModel"
_create_model(sagemaker, model_name)
endpoint_config_name = "MyEndpointConfig"
production_variants = [
{
"VariantName": "MyProductionVariant",
"ModelName": model_name,
"InitialInstanceCount": 1,
"InstanceType": "ml.t2.medium",
},
]
resp = sagemaker.create_endpoint_config(
EndpointConfigName=endpoint_config_name, ProductionVariants=production_variants
)
resp["EndpointConfigArn"].should.match(
r"^arn:aws:sagemaker:.*:.*:endpoint-config/{}$".format(endpoint_config_name)
)
resp = sagemaker.describe_endpoint_config(EndpointConfigName=endpoint_config_name)
resp["EndpointConfigArn"].should.match(
r"^arn:aws:sagemaker:.*:.*:endpoint-config/{}$".format(endpoint_config_name)
)
resp = sagemaker.delete_endpoint_config(EndpointConfigName=endpoint_config_name)
with pytest.raises(ClientError) as e:
sagemaker.describe_endpoint_config(EndpointConfigName=endpoint_config_name)
assert e.value.response["Error"]["Message"].startswith(
"Could not find endpoint configuration"
)
with pytest.raises(ClientError) as e:
sagemaker.delete_endpoint_config(EndpointConfigName=endpoint_config_name)
assert e.value.response["Error"]["Message"].startswith(
"Could not find endpoint configuration"
)
@mock_sagemaker
def test_create_endpoint_invalid_instance_type():
sagemaker = boto3.client("sagemaker", region_name=TEST_REGION_NAME)
model_name = "MyModel"
_create_model(sagemaker, model_name)
instance_type = "InvalidInstanceType"
production_variants = [
{
"VariantName": "MyProductionVariant",
"ModelName": model_name,
"InitialInstanceCount": 1,
"InstanceType": instance_type,
},
]
endpoint_config_name = "MyEndpointConfig"
with pytest.raises(ClientError) as e:
sagemaker.create_endpoint_config(
EndpointConfigName=endpoint_config_name,
ProductionVariants=production_variants,
)
assert e.value.response["Error"]["Code"] == "ValidationException"
expected_message = "Value '{}' at 'instanceType' failed to satisfy constraint: Member must satisfy enum value set: [".format(
instance_type
)
assert expected_message in e.value.response["Error"]["Message"]
@mock_sagemaker
def test_create_endpoint():
sagemaker = boto3.client("sagemaker", region_name=TEST_REGION_NAME)
endpoint_name = "MyEndpoint"
with pytest.raises(ClientError) as e:
sagemaker.create_endpoint(
EndpointName=endpoint_name, EndpointConfigName="NonexistentEndpointConfig"
)
assert e.value.response["Error"]["Message"].startswith(
"Could not find endpoint configuration"
)
model_name = "MyModel"
_create_model(sagemaker, model_name)
endpoint_config_name = "MyEndpointConfig"
_create_endpoint_config(sagemaker, endpoint_config_name, model_name)
resp = sagemaker.create_endpoint(
EndpointName=endpoint_name,
EndpointConfigName=endpoint_config_name,
Tags=GENERIC_TAGS_PARAM,
)
resp["EndpointArn"].should.match(
r"^arn:aws:sagemaker:.*:.*:endpoint/{}$".format(endpoint_name)
)
resp = sagemaker.describe_endpoint(EndpointName=endpoint_name)
resp["EndpointArn"].should.match(
r"^arn:aws:sagemaker:.*:.*:endpoint/{}$".format(endpoint_name)
)
resp["EndpointName"].should.equal(endpoint_name)
resp["EndpointConfigName"].should.equal(endpoint_config_name)
resp["EndpointStatus"].should.equal("InService")
assert isinstance(resp["CreationTime"], datetime.datetime)
assert isinstance(resp["LastModifiedTime"], datetime.datetime)
resp["ProductionVariants"][0]["VariantName"].should.equal("MyProductionVariant")
resp = sagemaker.list_tags(ResourceArn=resp["EndpointArn"])
assert resp["Tags"] == GENERIC_TAGS_PARAM
@mock_sagemaker
def test_delete_endpoint():
sagemaker = boto3.client("sagemaker", region_name=TEST_REGION_NAME)
model_name = "MyModel"
_create_model(sagemaker, model_name)
endpoint_config_name = "MyEndpointConfig"
_create_endpoint_config(sagemaker, endpoint_config_name, model_name)
endpoint_name = "MyEndpoint"
_create_endpoint(sagemaker, endpoint_name, endpoint_config_name)
sagemaker.delete_endpoint(EndpointName=endpoint_name)
with pytest.raises(ClientError) as e:
sagemaker.describe_endpoint(EndpointName=endpoint_name)
assert e.value.response["Error"]["Message"].startswith("Could not find endpoint")
with pytest.raises(ClientError) as e:
sagemaker.delete_endpoint(EndpointName=endpoint_name)
assert e.value.response["Error"]["Message"].startswith("Could not find endpoint")
def _create_model(boto_client, model_name):
resp = boto_client.create_model(
ModelName=model_name,
PrimaryContainer={
"Image": "382416733822.dkr.ecr.us-east-1.amazonaws.com/factorization-machines:1",
"ModelDataUrl": "s3://MyBucket/model.tar.gz",
},
ExecutionRoleArn=FAKE_ROLE_ARN,
)
assert resp["ResponseMetadata"]["HTTPStatusCode"] == 200
def _create_endpoint_config(boto_client, endpoint_config_name, model_name):
production_variants = [
{
"VariantName": "MyProductionVariant",
"ModelName": model_name,
"InitialInstanceCount": 1,
"InstanceType": "ml.t2.medium",
},
]
resp = boto_client.create_endpoint_config(
EndpointConfigName=endpoint_config_name, ProductionVariants=production_variants
)
resp["EndpointConfigArn"].should.match(
r"^arn:aws:sagemaker:.*:.*:endpoint-config/{}$".format(endpoint_config_name)
)
def _create_endpoint(boto_client, endpoint_name, endpoint_config_name):
resp = boto_client.create_endpoint(
EndpointName=endpoint_name, EndpointConfigName=endpoint_config_name
)
resp["EndpointArn"].should.match(
r"^arn:aws:sagemaker:.*:.*:endpoint/{}$".format(endpoint_name)
)