moto/tests/test_sagemaker/cloudformation_test_configs.py
2022-05-08 22:25:40 +00:00

322 lines
9.8 KiB
Python

import json
from abc import ABCMeta, abstractmethod
from moto.core import ACCOUNT_ID
class TestConfig(metaclass=ABCMeta):
"""Provides the interface to use for creating test configurations.
This class will provide the interface for what information will be
needed for the SageMaker CloudFormation tests. Ultimately, this will
improve the readability of the tests in `test_sagemaker_cloudformation.py`
because it will reduce the amount of information we pass through the
`pytest.mark.parametrize` decorator.
"""
@property
@abstractmethod
def resource_name(self):
pass
@property
@abstractmethod
def describe_function_name(self):
pass
@property
@abstractmethod
def name_parameter(self):
pass
@property
@abstractmethod
def arn_parameter(self):
pass
@abstractmethod
def get_cloudformation_template(self, include_outputs=True, **kwargs):
pass
def run_setup_procedure(self, sagemaker_client):
"""Provides a method to set up resources with a SageMaker client.
Note: This procedure should be called while within a `mock_sagemaker`
context so that no actual resources are created with the sagemaker_client.
"""
pass
class NotebookInstanceTestConfig(TestConfig):
"""Test configuration for SageMaker Notebook Instances."""
@property
def resource_name(self):
return "TestNotebook"
@property
def describe_function_name(self):
return "describe_notebook_instance"
@property
def name_parameter(self):
return "NotebookInstanceName"
@property
def arn_parameter(self):
return "NotebookInstanceArn"
def get_cloudformation_template(self, include_outputs=True, **kwargs):
instance_type = kwargs.get("instance_type", "ml.c4.xlarge")
role_arn = kwargs.get(
"role_arn", "arn:aws:iam::{}:role/FakeRole".format(ACCOUNT_ID)
)
template = {
"AWSTemplateFormatVersion": "2010-09-09",
"Resources": {
self.resource_name: {
"Type": "AWS::SageMaker::NotebookInstance",
"Properties": {"InstanceType": instance_type, "RoleArn": role_arn},
},
},
}
if include_outputs:
template["Outputs"] = {
"Arn": {"Value": {"Ref": self.resource_name}},
"Name": {
"Value": {
"Fn::GetAtt": [self.resource_name, "NotebookInstanceName"]
}
},
}
return json.dumps(template)
class NotebookInstanceLifecycleConfigTestConfig(TestConfig):
"""Test configuration for SageMaker Notebook Instance Lifecycle Configs."""
@property
def resource_name(self):
return "TestNotebookLifecycleConfig"
@property
def describe_function_name(self):
return "describe_notebook_instance_lifecycle_config"
@property
def name_parameter(self):
return "NotebookInstanceLifecycleConfigName"
@property
def arn_parameter(self):
return "NotebookInstanceLifecycleConfigArn"
def get_cloudformation_template(self, include_outputs=True, **kwargs):
on_create = kwargs.get("on_create")
on_start = kwargs.get("on_start")
template = {
"AWSTemplateFormatVersion": "2010-09-09",
"Resources": {
self.resource_name: {
"Type": "AWS::SageMaker::NotebookInstanceLifecycleConfig",
"Properties": {},
},
},
}
if on_create is not None:
template["Resources"][self.resource_name]["Properties"]["OnCreate"] = [
{"Content": on_create}
]
if on_start is not None:
template["Resources"][self.resource_name]["Properties"]["OnStart"] = [
{"Content": on_start}
]
if include_outputs:
template["Outputs"] = {
"Arn": {"Value": {"Ref": self.resource_name}},
"Name": {
"Value": {
"Fn::GetAtt": [
self.resource_name,
"NotebookInstanceLifecycleConfigName",
]
}
},
}
return json.dumps(template)
class ModelTestConfig(TestConfig):
"""Test configuration for SageMaker Models."""
@property
def resource_name(self):
return "TestModel"
@property
def describe_function_name(self):
return "describe_model"
@property
def name_parameter(self):
return "ModelName"
@property
def arn_parameter(self):
return "ModelArn"
def get_cloudformation_template(self, include_outputs=True, **kwargs):
execution_role_arn = kwargs.get(
"execution_role_arn", "arn:aws:iam::{}:role/FakeRole".format(ACCOUNT_ID)
)
image = kwargs.get(
"image", "404615174143.dkr.ecr.us-east-2.amazonaws.com/linear-learner:1"
)
template = {
"AWSTemplateFormatVersion": "2010-09-09",
"Resources": {
self.resource_name: {
"Type": "AWS::SageMaker::Model",
"Properties": {
"ExecutionRoleArn": execution_role_arn,
"PrimaryContainer": {"Image": image},
},
},
},
}
if include_outputs:
template["Outputs"] = {
"Arn": {"Value": {"Ref": self.resource_name}},
"Name": {"Value": {"Fn::GetAtt": [self.resource_name, "ModelName"]}},
}
return json.dumps(template)
class EndpointConfigTestConfig(TestConfig):
"""Test configuration for SageMaker Endpoint Configs."""
@property
def resource_name(self):
return "TestEndpointConfig"
@property
def describe_function_name(self):
return "describe_endpoint_config"
@property
def name_parameter(self):
return "EndpointConfigName"
@property
def arn_parameter(self):
return "EndpointConfigArn"
def get_cloudformation_template(self, include_outputs=True, **kwargs):
num_production_variants = kwargs.get("num_production_variants", 1)
production_variants = [
{
"InitialInstanceCount": 1,
"InitialVariantWeight": 1,
"InstanceType": "ml.c4.xlarge",
"ModelName": self.resource_name,
"VariantName": "variant-name-{}".format(i),
}
for i in range(num_production_variants)
]
template = {
"AWSTemplateFormatVersion": "2010-09-09",
"Resources": {
self.resource_name: {
"Type": "AWS::SageMaker::EndpointConfig",
"Properties": {"ProductionVariants": production_variants},
},
},
}
if include_outputs:
template["Outputs"] = {
"Arn": {"Value": {"Ref": self.resource_name}},
"Name": {
"Value": {"Fn::GetAtt": [self.resource_name, "EndpointConfigName"]}
},
}
return json.dumps(template)
def run_setup_procedure(self, sagemaker_client):
"""Adds Model that can be referenced in the CloudFormation template."""
sagemaker_client.create_model(
ModelName=self.resource_name,
ExecutionRoleArn="arn:aws:iam::{}:role/FakeRole".format(ACCOUNT_ID),
PrimaryContainer={
"Image": "404615174143.dkr.ecr.us-east-2.amazonaws.com/linear-learner:1",
},
)
class EndpointTestConfig(TestConfig):
"""Test configuration for SageMaker Endpoints."""
@property
def resource_name(self):
return "TestEndpoint"
@property
def describe_function_name(self):
return "describe_endpoint"
@property
def name_parameter(self):
return "EndpointName"
@property
def arn_parameter(self):
return "EndpointArn"
def get_cloudformation_template(self, include_outputs=True, **kwargs):
endpoint_config_name = kwargs.get("endpoint_config_name", self.resource_name)
template = {
"AWSTemplateFormatVersion": "2010-09-09",
"Resources": {
self.resource_name: {
"Type": "AWS::SageMaker::Endpoint",
"Properties": {"EndpointConfigName": endpoint_config_name},
},
},
}
if include_outputs:
template["Outputs"] = {
"Arn": {"Value": {"Ref": self.resource_name}},
"Name": {"Value": {"Fn::GetAtt": [self.resource_name, "EndpointName"]}},
}
return json.dumps(template)
def run_setup_procedure(self, sagemaker_client):
"""Adds Model and Endpoint Config that can be referenced in the CloudFormation template."""
sagemaker_client.create_model(
ModelName=self.resource_name,
ExecutionRoleArn="arn:aws:iam::{}:role/FakeRole".format(ACCOUNT_ID),
PrimaryContainer={
"Image": "404615174143.dkr.ecr.us-east-2.amazonaws.com/linear-learner:1",
},
)
sagemaker_client.create_endpoint_config(
EndpointConfigName=self.resource_name,
ProductionVariants=[
{
"InitialInstanceCount": 1,
"InitialVariantWeight": 1,
"InstanceType": "ml.c4.xlarge",
"ModelName": self.resource_name,
"VariantName": "variant-name-1",
},
],
)