171 lines
5.8 KiB
Python
171 lines
5.8 KiB
Python
import re
|
|
from datetime import datetime
|
|
from typing import Dict, List, Optional
|
|
|
|
from moto.core import BaseBackend, BackendDict
|
|
from moto.core.utils import iso_8601_datetime_without_milliseconds
|
|
from .exceptions import (
|
|
InvalidInputException,
|
|
ResourceAlreadyExistsException,
|
|
ResourceNotFoundException,
|
|
ValidationException,
|
|
)
|
|
|
|
|
|
class DatasetGroup:
|
|
accepted_dataset_group_name_format = re.compile(r"^[a-zA-Z][a-z-A-Z0-9_]*")
|
|
accepted_dataset_group_arn_format = re.compile(r"^[a-zA-Z0-9\-\_\.\/\:]+$")
|
|
accepted_dataset_types = [
|
|
"INVENTORY_PLANNING",
|
|
"METRICS",
|
|
"RETAIL",
|
|
"EC2_CAPACITY",
|
|
"CUSTOM",
|
|
"WEB_TRAFFIC",
|
|
"WORK_FORCE",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
account_id: str,
|
|
region_name: str,
|
|
dataset_arns: List[str],
|
|
dataset_group_name: str,
|
|
domain: str,
|
|
tags: Optional[List[Dict[str, str]]] = None,
|
|
):
|
|
self.creation_date = iso_8601_datetime_without_milliseconds(datetime.now())
|
|
self.modified_date = self.creation_date
|
|
|
|
self.arn = f"arn:aws:forecast:{region_name}:{account_id}:dataset-group/{dataset_group_name}"
|
|
self.dataset_arns = dataset_arns if dataset_arns else []
|
|
self.dataset_group_name = dataset_group_name
|
|
self.domain = domain
|
|
self.tags = tags
|
|
self._validate()
|
|
|
|
def update(self, dataset_arns: List[str]) -> None:
|
|
self.dataset_arns = dataset_arns
|
|
self.last_modified_date = iso_8601_datetime_without_milliseconds(datetime.now())
|
|
|
|
def _validate(self) -> None:
|
|
errors = []
|
|
|
|
errors.extend(self._validate_dataset_group_name())
|
|
errors.extend(self._validate_dataset_group_name_len())
|
|
errors.extend(self._validate_dataset_group_domain())
|
|
|
|
if errors:
|
|
err_count = len(errors)
|
|
message = str(err_count) + " validation error"
|
|
message += "s" if err_count > 1 else ""
|
|
message += " detected: "
|
|
message += "; ".join(errors)
|
|
raise ValidationException(message)
|
|
|
|
def _validate_dataset_group_name(self) -> List[str]:
|
|
errors = []
|
|
if not re.match(
|
|
self.accepted_dataset_group_name_format, self.dataset_group_name
|
|
):
|
|
errors.append(
|
|
"Value '"
|
|
+ self.dataset_group_name
|
|
+ "' at 'datasetGroupName' failed to satisfy constraint: Member must satisfy regular expression pattern "
|
|
+ self.accepted_dataset_group_name_format.pattern
|
|
)
|
|
return errors
|
|
|
|
def _validate_dataset_group_name_len(self) -> List[str]:
|
|
errors = []
|
|
if len(self.dataset_group_name) >= 64:
|
|
errors.append(
|
|
"Value '"
|
|
+ self.dataset_group_name
|
|
+ "' at 'datasetGroupName' failed to satisfy constraint: Member must have length less than or equal to 63"
|
|
)
|
|
return errors
|
|
|
|
def _validate_dataset_group_domain(self) -> List[str]:
|
|
errors = []
|
|
if self.domain not in self.accepted_dataset_types:
|
|
errors.append(
|
|
"Value '"
|
|
+ self.domain
|
|
+ "' at 'domain' failed to satisfy constraint: Member must satisfy enum value set "
|
|
+ str(self.accepted_dataset_types)
|
|
)
|
|
return errors
|
|
|
|
|
|
class ForecastBackend(BaseBackend):
|
|
def __init__(self, region_name: str, account_id: str):
|
|
super().__init__(region_name, account_id)
|
|
self.dataset_groups: Dict[str, DatasetGroup] = {}
|
|
self.datasets: Dict[str, str] = {}
|
|
|
|
def create_dataset_group(
|
|
self,
|
|
dataset_group_name: str,
|
|
domain: str,
|
|
dataset_arns: List[str],
|
|
tags: List[Dict[str, str]],
|
|
) -> DatasetGroup:
|
|
dataset_group = DatasetGroup(
|
|
account_id=self.account_id,
|
|
region_name=self.region_name,
|
|
dataset_group_name=dataset_group_name,
|
|
domain=domain,
|
|
dataset_arns=dataset_arns,
|
|
tags=tags,
|
|
)
|
|
|
|
if dataset_arns:
|
|
for dataset_arn in dataset_arns:
|
|
if dataset_arn not in self.datasets:
|
|
raise InvalidInputException(
|
|
"Dataset arns: [" + dataset_arn + "] are not found"
|
|
)
|
|
|
|
if self.dataset_groups.get(dataset_group.arn):
|
|
raise ResourceAlreadyExistsException(
|
|
"A dataset group already exists with the arn: " + dataset_group.arn
|
|
)
|
|
|
|
self.dataset_groups[dataset_group.arn] = dataset_group
|
|
return dataset_group
|
|
|
|
def describe_dataset_group(self, dataset_group_arn: str) -> DatasetGroup:
|
|
try:
|
|
return self.dataset_groups[dataset_group_arn]
|
|
except KeyError:
|
|
raise ResourceNotFoundException("No resource found " + dataset_group_arn)
|
|
|
|
def delete_dataset_group(self, dataset_group_arn: str) -> None:
|
|
try:
|
|
del self.dataset_groups[dataset_group_arn]
|
|
except KeyError:
|
|
raise ResourceNotFoundException("No resource found " + dataset_group_arn)
|
|
|
|
def update_dataset_group(
|
|
self, dataset_group_arn: str, dataset_arns: List[str]
|
|
) -> None:
|
|
try:
|
|
dsg = self.dataset_groups[dataset_group_arn]
|
|
except KeyError:
|
|
raise ResourceNotFoundException("No resource found " + dataset_group_arn)
|
|
|
|
for dataset_arn in dataset_arns:
|
|
if dataset_arn not in dsg.dataset_arns:
|
|
raise InvalidInputException(
|
|
"Dataset arns: [" + dataset_arn + "] are not found"
|
|
)
|
|
|
|
dsg.update(dataset_arns)
|
|
|
|
def list_dataset_groups(self) -> List[DatasetGroup]:
|
|
return [v for (_, v) in self.dataset_groups.items()]
|
|
|
|
|
|
forecast_backends = BackendDict(ForecastBackend, "forecast")
|