moto/tests/test_batch/test_batch_jobs.py
2021-10-18 19:44:29 +00:00

652 lines
20 KiB
Python

from . import _get_clients, _setup
import datetime
import sure # noqa # pylint: disable=unused-import
from moto import mock_batch, mock_iam, mock_ec2, mock_ecs, mock_logs
import pytest
import time
from uuid import uuid4
@mock_logs
@mock_ec2
@mock_ecs
@mock_iam
@mock_batch
def test_submit_job_by_name():
ec2_client, iam_client, _, _, batch_client = _get_clients()
_, _, _, iam_arn = _setup(ec2_client, iam_client)
compute_name = str(uuid4())
resp = batch_client.create_compute_environment(
computeEnvironmentName=compute_name,
type="UNMANAGED",
state="ENABLED",
serviceRole=iam_arn,
)
arn = resp["computeEnvironmentArn"]
resp = batch_client.create_job_queue(
jobQueueName=str(uuid4()),
state="ENABLED",
priority=123,
computeEnvironmentOrder=[{"order": 123, "computeEnvironment": arn}],
)
queue_arn = resp["jobQueueArn"]
job_definition_name = f"sleep10_{str(uuid4())[0:6]}"
batch_client.register_job_definition(
jobDefinitionName=job_definition_name,
type="container",
containerProperties={
"image": "busybox",
"vcpus": 1,
"memory": 128,
"command": ["sleep", "10"],
},
)
batch_client.register_job_definition(
jobDefinitionName=job_definition_name,
type="container",
containerProperties={
"image": "busybox",
"vcpus": 1,
"memory": 256,
"command": ["sleep", "10"],
},
)
resp = batch_client.register_job_definition(
jobDefinitionName=job_definition_name,
type="container",
containerProperties={
"image": "busybox",
"vcpus": 1,
"memory": 512,
"command": ["sleep", "10"],
},
)
job_definition_arn = resp["jobDefinitionArn"]
resp = batch_client.submit_job(
jobName="test1", jobQueue=queue_arn, jobDefinition=job_definition_name
)
job_id = resp["jobId"]
resp_jobs = batch_client.describe_jobs(jobs=[job_id])
# batch_client.terminate_job(jobId=job_id)
len(resp_jobs["jobs"]).should.equal(1)
resp_jobs["jobs"][0]["jobId"].should.equal(job_id)
resp_jobs["jobs"][0]["jobQueue"].should.equal(queue_arn)
resp_jobs["jobs"][0]["jobDefinition"].should.equal(job_definition_arn)
# SLOW TESTS
@mock_logs
@mock_ec2
@mock_ecs
@mock_iam
@mock_batch
@pytest.mark.network
def test_submit_job():
ec2_client, iam_client, _, logs_client, batch_client = _get_clients()
_, _, _, iam_arn = _setup(ec2_client, iam_client)
job_def_name = str(uuid4())[0:6]
commands = ["echo", "hello"]
job_def_arn, queue_arn = prepare_job(batch_client, commands, iam_arn, job_def_name)
resp = batch_client.submit_job(
jobName=str(uuid4())[0:6], jobQueue=queue_arn, jobDefinition=job_def_arn
)
job_id = resp["jobId"]
_wait_for_job_status(batch_client, job_id, "SUCCEEDED")
resp = logs_client.describe_log_streams(
logGroupName="/aws/batch/job", logStreamNamePrefix=job_def_name
)
resp["logStreams"].should.have.length_of(1)
ls_name = resp["logStreams"][0]["logStreamName"]
resp = logs_client.get_log_events(
logGroupName="/aws/batch/job", logStreamName=ls_name
)
[event["message"] for event in resp["events"]].should.equal(["hello"])
@mock_logs
@mock_ec2
@mock_ecs
@mock_iam
@mock_batch
@pytest.mark.network
def test_list_jobs():
ec2_client, iam_client, _, _, batch_client = _get_clients()
_, _, _, iam_arn = _setup(ec2_client, iam_client)
job_def_name = "sleep5"
commands = ["sleep", "5"]
job_def_arn, queue_arn = prepare_job(batch_client, commands, iam_arn, job_def_name)
resp = batch_client.submit_job(
jobName="test1", jobQueue=queue_arn, jobDefinition=job_def_arn
)
job_id1 = resp["jobId"]
resp = batch_client.submit_job(
jobName="test2", jobQueue=queue_arn, jobDefinition=job_def_arn
)
job_id2 = resp["jobId"]
batch_client.list_jobs(jobQueue=queue_arn, jobStatus="SUCCEEDED")[
"jobSummaryList"
].should.have.length_of(0)
# Wait only as long as it takes to run the jobs
for job_id in [job_id1, job_id2]:
_wait_for_job_status(batch_client, job_id, "SUCCEEDED")
batch_client.list_jobs(jobQueue=queue_arn, jobStatus="SUCCEEDED")[
"jobSummaryList"
].should.have.length_of(2)
@mock_logs
@mock_ec2
@mock_ecs
@mock_iam
@mock_batch
def test_terminate_job():
ec2_client, iam_client, _, logs_client, batch_client = _get_clients()
_, _, _, iam_arn = _setup(ec2_client, iam_client)
job_def_name = f"echo-sleep-echo-{str(uuid4())[0:6]}"
commands = ["sh", "-c", "echo start && sleep 30 && echo stop"]
job_def_arn, queue_arn = prepare_job(batch_client, commands, iam_arn, job_def_name)
resp = batch_client.submit_job(
jobName="test1", jobQueue=queue_arn, jobDefinition=job_def_arn
)
job_id = resp["jobId"]
_wait_for_job_status(batch_client, job_id, "RUNNING")
batch_client.terminate_job(jobId=job_id, reason="test_terminate")
_wait_for_job_status(batch_client, job_id, "FAILED")
resp = batch_client.describe_jobs(jobs=[job_id])
resp["jobs"][0]["jobName"].should.equal("test1")
resp["jobs"][0]["status"].should.equal("FAILED")
resp["jobs"][0]["statusReason"].should.equal("test_terminate")
ls_name = f"{job_def_name}/default/{job_id}"
resp = logs_client.get_log_events(
logGroupName="/aws/batch/job", logStreamName=ls_name
)
# Events should only contain 'start' because we interrupted
# the job before 'stop' was written to the logs.
resp["events"].should.have.length_of(1)
resp["events"][0]["message"].should.equal("start")
@mock_logs
@mock_ec2
@mock_ecs
@mock_iam
@mock_batch
def test_cancel_pending_job():
ec2_client, iam_client, _, _, batch_client = _get_clients()
_, _, _, iam_arn = _setup(ec2_client, iam_client)
# We need to be able to cancel a job that has not been started yet
# Locally, our jobs start so fast that we can't cancel them in time
# So delay our job, by letting it depend on a slow-running job
commands = ["sleep", "1"]
job_def_arn, queue_arn = prepare_job(batch_client, commands, iam_arn, "deptest")
resp = batch_client.submit_job(
jobName="test1", jobQueue=queue_arn, jobDefinition=job_def_arn
)
delayed_job = resp["jobId"]
depends_on = [{"jobId": delayed_job, "type": "SEQUENTIAL"}]
resp = batch_client.submit_job(
jobName="test_job_name",
jobQueue=queue_arn,
jobDefinition=job_def_arn,
dependsOn=depends_on,
)
job_id = resp["jobId"]
batch_client.cancel_job(jobId=job_id, reason="test_cancel")
_wait_for_job_status(batch_client, job_id, "FAILED", seconds_to_wait=30)
resp = batch_client.describe_jobs(jobs=[job_id])
resp["jobs"][0]["jobName"].should.equal("test_job_name")
resp["jobs"][0]["statusReason"].should.equal("test_cancel")
@mock_logs
@mock_ec2
@mock_ecs
@mock_iam
@mock_batch
def test_cancel_running_job():
"""
Test verifies that the moment the job has started, we can't cancel anymore
"""
ec2_client, iam_client, _, _, batch_client = _get_clients()
_, _, _, iam_arn = _setup(ec2_client, iam_client)
job_def_name = "echo-o-o"
commands = ["echo", "start"]
job_def_arn, queue_arn = prepare_job(batch_client, commands, iam_arn, job_def_name)
resp = batch_client.submit_job(
jobName="test_job_name", jobQueue=queue_arn, jobDefinition=job_def_arn
)
job_id = resp["jobId"]
_wait_for_job_status(batch_client, job_id, "STARTING")
batch_client.cancel_job(jobId=job_id, reason="test_cancel")
# We cancelled too late, the job was already running. Now we just wait for it to succeed
_wait_for_job_status(batch_client, job_id, "SUCCEEDED", seconds_to_wait=5)
resp = batch_client.describe_jobs(jobs=[job_id])
resp["jobs"][0]["jobName"].should.equal("test_job_name")
resp["jobs"][0].shouldnt.have.key("statusReason")
def _wait_for_job_status(client, job_id, status, seconds_to_wait=30):
wait_time = datetime.datetime.now() + datetime.timedelta(seconds=seconds_to_wait)
last_job_status = None
while datetime.datetime.now() < wait_time:
resp = client.describe_jobs(jobs=[job_id])
last_job_status = resp["jobs"][0]["status"]
if last_job_status == status:
break
else:
raise RuntimeError(
"Time out waiting for job status {status}!\n Last status: {last_status}".format(
status=status, last_status=last_job_status
)
)
@mock_logs
@mock_ec2
@mock_ecs
@mock_iam
@mock_batch
def test_failed_job():
ec2_client, iam_client, _, _, batch_client = _get_clients()
_, _, _, iam_arn = _setup(ec2_client, iam_client)
job_def_name = "exit-1"
commands = ["exit", "1"]
job_def_arn, queue_arn = prepare_job(batch_client, commands, iam_arn, job_def_name)
resp = batch_client.submit_job(
jobName="test1", jobQueue=queue_arn, jobDefinition=job_def_arn
)
job_id = resp["jobId"]
future = datetime.datetime.now() + datetime.timedelta(seconds=30)
while datetime.datetime.now() < future:
resp = batch_client.describe_jobs(jobs=[job_id])
if resp["jobs"][0]["status"] == "FAILED":
break
if resp["jobs"][0]["status"] == "SUCCEEDED":
raise RuntimeError("Batch job succeeded even though it had exit code 1")
time.sleep(0.5)
else:
raise RuntimeError("Batch job timed out")
@mock_logs
@mock_ec2
@mock_ecs
@mock_iam
@mock_batch
def test_dependencies():
ec2_client, iam_client, _, logs_client, batch_client = _get_clients()
_, _, _, iam_arn = _setup(ec2_client, iam_client)
job_def_arn, queue_arn = prepare_job(
batch_client,
commands=["echo", "hello"],
iam_arn=iam_arn,
job_def_name="dependencytest",
)
resp = batch_client.submit_job(
jobName="test1", jobQueue=queue_arn, jobDefinition=job_def_arn
)
job_id1 = resp["jobId"]
resp = batch_client.submit_job(
jobName="test2", jobQueue=queue_arn, jobDefinition=job_def_arn
)
job_id2 = resp["jobId"]
depends_on = [
{"jobId": job_id1, "type": "SEQUENTIAL"},
{"jobId": job_id2, "type": "SEQUENTIAL"},
]
resp = batch_client.submit_job(
jobName="test3",
jobQueue=queue_arn,
jobDefinition=job_def_arn,
dependsOn=depends_on,
)
job_id3 = resp["jobId"]
future = datetime.datetime.now() + datetime.timedelta(seconds=30)
while datetime.datetime.now() < future:
resp = batch_client.describe_jobs(jobs=[job_id1, job_id2, job_id3])
if any([job["status"] == "FAILED" for job in resp["jobs"]]):
raise RuntimeError("Batch job failed")
if all([job["status"] == "SUCCEEDED" for job in resp["jobs"]]):
break
time.sleep(0.5)
else:
raise RuntimeError("Batch job timed out")
log_stream_name = "/aws/batch/job"
all_streams = retrieve_all_streams(log_stream_name, logs_client)
nr_logstreams_found = 0
expected_logstream_names = [
f"dependencytest/default/{_id}" for _id in [job_id1, job_id2, job_id3]
]
for log_stream in all_streams:
ls_name = log_stream["logStreamName"]
if ls_name not in expected_logstream_names:
continue
resp = logs_client.get_log_events(
logGroupName=log_stream_name, logStreamName=ls_name
)
[event["message"] for event in resp["events"]].should.equal(["hello"])
nr_logstreams_found = nr_logstreams_found + 1
nr_logstreams_found.should.equal(3)
def retrieve_all_streams(log_stream_name, logs_client):
resp = logs_client.describe_log_streams(logGroupName=log_stream_name)
all_streams = resp["logStreams"]
token = resp.get("nextToken")
while token:
resp = logs_client.describe_log_streams(
logGroupName=log_stream_name, nextToken=token
)
all_streams.extend(resp["logStreams"])
token = resp.get("nextToken")
return all_streams
@mock_logs
@mock_ec2
@mock_ecs
@mock_iam
@mock_batch
def test_failed_dependencies():
ec2_client, iam_client, _, _, batch_client = _get_clients()
_, _, _, iam_arn = _setup(ec2_client, iam_client)
compute_name = str(uuid4())[0:6]
resp = batch_client.create_compute_environment(
computeEnvironmentName=compute_name,
type="UNMANAGED",
state="ENABLED",
serviceRole=iam_arn,
)
arn = resp["computeEnvironmentArn"]
resp = batch_client.create_job_queue(
jobQueueName=str(uuid4())[0:6],
state="ENABLED",
priority=123,
computeEnvironmentOrder=[{"order": 123, "computeEnvironment": arn}],
)
queue_arn = resp["jobQueueArn"]
resp = batch_client.register_job_definition(
jobDefinitionName="sayhellotomylittlefriend",
type="container",
containerProperties={
"image": "busybox:latest",
"vcpus": 1,
"memory": 128,
"command": ["echo", "hello"],
},
)
job_def_arn_success = resp["jobDefinitionArn"]
resp = batch_client.register_job_definition(
jobDefinitionName="sayhellotomylittlefriend_failed",
type="container",
containerProperties={
"image": "busybox:latest",
"vcpus": 1,
"memory": 128,
"command": ["exi1", "1"],
},
)
job_def_arn_failure = resp["jobDefinitionArn"]
resp = batch_client.submit_job(
jobName="test1", jobQueue=queue_arn, jobDefinition=job_def_arn_success
)
job_id1 = resp["jobId"]
resp = batch_client.submit_job(
jobName="test2", jobQueue=queue_arn, jobDefinition=job_def_arn_failure
)
job_id2 = resp["jobId"]
depends_on = [
{"jobId": job_id1, "type": "SEQUENTIAL"},
{"jobId": job_id2, "type": "SEQUENTIAL"},
]
resp = batch_client.submit_job(
jobName="test3",
jobQueue=queue_arn,
jobDefinition=job_def_arn_success,
dependsOn=depends_on,
)
job_id3 = resp["jobId"]
future = datetime.datetime.now() + datetime.timedelta(seconds=30)
# Query batch jobs until all jobs have run.
# Job 2 is supposed to fail and in consequence Job 3 should never run
# and status should change directly from PENDING to FAILED
while datetime.datetime.now() < future:
resp = batch_client.describe_jobs(jobs=[job_id2, job_id3])
assert resp["jobs"][0]["status"] != "SUCCEEDED", "Job 2 cannot succeed"
assert resp["jobs"][1]["status"] != "SUCCEEDED", "Job 3 cannot succeed"
if resp["jobs"][1]["status"] == "FAILED":
break
time.sleep(0.5)
else:
raise RuntimeError("Batch job timed out")
@mock_logs
@mock_ec2
@mock_ecs
@mock_iam
@mock_batch
def test_container_overrides():
"""
Test if container overrides have any effect.
Overwrites should be reflected in container description.
Environment variables should be accessible inside docker container
"""
# Set up environment
ec2_client, iam_client, _, logs_client, batch_client = _get_clients()
_, _, _, iam_arn = _setup(ec2_client, iam_client)
compute_name = str(uuid4())[0:6]
resp = batch_client.create_compute_environment(
computeEnvironmentName=compute_name,
type="UNMANAGED",
state="ENABLED",
serviceRole=iam_arn,
)
arn = resp["computeEnvironmentArn"]
resp = batch_client.create_job_queue(
jobQueueName=str(uuid4())[0:6],
state="ENABLED",
priority=123,
computeEnvironmentOrder=[{"order": 123, "computeEnvironment": arn}],
)
queue_arn = resp["jobQueueArn"]
job_definition_name = f"sleep10_{str(uuid4())[0:6]}"
# Set up Job Definition
# We will then override the container properties in the actual job
resp = batch_client.register_job_definition(
jobDefinitionName=job_definition_name,
type="container",
containerProperties={
"image": "busybox",
"vcpus": 1,
"memory": 512,
"command": ["sleep", "10"],
"environment": [
{"name": "TEST0", "value": "from job definition"},
{"name": "TEST1", "value": "from job definition"},
],
},
)
job_definition_arn = resp["jobDefinitionArn"]
# The Job to run, including container overrides
resp = batch_client.submit_job(
jobName="test1",
jobQueue=queue_arn,
jobDefinition=job_definition_name,
containerOverrides={
"vcpus": 2,
"memory": 1024,
"command": ["printenv"],
"environment": [
{"name": "TEST0", "value": "from job"},
{"name": "TEST2", "value": "from job"},
],
},
)
job_id = resp["jobId"]
# Wait until Job finishes
future = datetime.datetime.now() + datetime.timedelta(seconds=30)
while datetime.datetime.now() < future:
resp_jobs = batch_client.describe_jobs(jobs=[job_id])
if resp_jobs["jobs"][0]["status"] == "FAILED":
raise RuntimeError("Batch job failed")
if resp_jobs["jobs"][0]["status"] == "SUCCEEDED":
break
time.sleep(0.5)
else:
raise RuntimeError("Batch job timed out")
# Getting the log stream to read out env variables inside container
resp = logs_client.describe_log_streams(logGroupName="/aws/batch/job")
env_var = list()
for stream in resp["logStreams"]:
ls_name = stream["logStreamName"]
stream_resp = logs_client.get_log_events(
logGroupName="/aws/batch/job", logStreamName=ls_name
)
for event in stream_resp["events"]:
if "TEST" in event["message"] or "AWS" in event["message"]:
key, value = tuple(event["message"].split("="))
env_var.append({"name": key, "value": value})
len(resp_jobs["jobs"]).should.equal(1)
resp_jobs["jobs"][0]["jobId"].should.equal(job_id)
resp_jobs["jobs"][0]["jobQueue"].should.equal(queue_arn)
resp_jobs["jobs"][0]["jobDefinition"].should.equal(job_definition_arn)
resp_jobs["jobs"][0]["container"]["vcpus"].should.equal(2)
resp_jobs["jobs"][0]["container"]["memory"].should.equal(1024)
resp_jobs["jobs"][0]["container"]["command"].should.equal(["printenv"])
sure.expect(resp_jobs["jobs"][0]["container"]["environment"]).to.contain(
{"name": "TEST0", "value": "from job"}
)
sure.expect(resp_jobs["jobs"][0]["container"]["environment"]).to.contain(
{"name": "TEST1", "value": "from job definition"}
)
sure.expect(resp_jobs["jobs"][0]["container"]["environment"]).to.contain(
{"name": "TEST2", "value": "from job"}
)
sure.expect(resp_jobs["jobs"][0]["container"]["environment"]).to.contain(
{"name": "AWS_BATCH_JOB_ID", "value": job_id}
)
sure.expect(env_var).to.contain({"name": "TEST0", "value": "from job"})
sure.expect(env_var).to.contain({"name": "TEST1", "value": "from job definition"})
sure.expect(env_var).to.contain({"name": "TEST2", "value": "from job"})
sure.expect(env_var).to.contain({"name": "AWS_BATCH_JOB_ID", "value": job_id})
def prepare_job(batch_client, commands, iam_arn, job_def_name):
compute_name = str(uuid4())[0:6]
resp = batch_client.create_compute_environment(
computeEnvironmentName=compute_name,
type="UNMANAGED",
state="ENABLED",
serviceRole=iam_arn,
)
arn = resp["computeEnvironmentArn"]
resp = batch_client.create_job_queue(
jobQueueName=str(uuid4())[0:6],
state="ENABLED",
priority=123,
computeEnvironmentOrder=[{"order": 123, "computeEnvironment": arn}],
)
queue_arn = resp["jobQueueArn"]
resp = batch_client.register_job_definition(
jobDefinitionName=job_def_name,
type="container",
containerProperties={
"image": "busybox:latest",
"vcpus": 1,
"memory": 128,
"command": commands,
},
)
job_def_arn = resp["jobDefinitionArn"]
return job_def_arn, queue_arn