moto/moto/dynamodb2/comparisons.py
Asher Foa 374b623e1d Fix some 'DeprecationWarning: invalid escape sequence' warnings and use str.format for string interpolation.
I am seeing a lot of deperecation warnings when I use moto for my tests (running under pytest), so I figured I'll clean up some of them.
2020-03-12 13:50:59 -07:00

1211 lines
39 KiB
Python

from __future__ import unicode_literals
import re
from collections import deque
from collections import namedtuple
def get_filter_expression(expr, names, values):
"""
Parse a filter expression into an Op.
Examples
expr = 'Id > 5 AND attribute_exists(test) AND Id BETWEEN 5 AND 6 OR length < 6 AND contains(test, 1) AND 5 IN (4,5, 6) OR (Id < 5 AND 5 > Id)'
expr = 'Id > 5 AND Subs < 7'
"""
parser = ConditionExpressionParser(expr, names, values)
return parser.parse()
def get_expected(expected):
"""
Parse a filter expression into an Op.
Examples
expr = 'Id > 5 AND attribute_exists(test) AND Id BETWEEN 5 AND 6 OR length < 6 AND contains(test, 1) AND 5 IN (4,5, 6) OR (Id < 5 AND 5 > Id)'
expr = 'Id > 5 AND Subs < 7'
"""
ops = {
"EQ": OpEqual,
"NE": OpNotEqual,
"LE": OpLessThanOrEqual,
"LT": OpLessThan,
"GE": OpGreaterThanOrEqual,
"GT": OpGreaterThan,
"NOT_NULL": FuncAttrExists,
"NULL": FuncAttrNotExists,
"CONTAINS": FuncContains,
"NOT_CONTAINS": FuncNotContains,
"BEGINS_WITH": FuncBeginsWith,
"IN": FuncIn,
"BETWEEN": FuncBetween,
}
# NOTE: Always uses ConditionalOperator=AND
conditions = []
for key, cond in expected.items():
path = AttributePath([key])
if "Exists" in cond:
if cond["Exists"]:
conditions.append(FuncAttrExists(path))
else:
conditions.append(FuncAttrNotExists(path))
elif "Value" in cond:
conditions.append(OpEqual(path, AttributeValue(cond["Value"])))
elif "ComparisonOperator" in cond:
operator_name = cond["ComparisonOperator"]
values = [AttributeValue(v) for v in cond.get("AttributeValueList", [])]
OpClass = ops[operator_name]
conditions.append(OpClass(path, *values))
# NOTE: Ignore ConditionalOperator
ConditionalOp = OpAnd
if conditions:
output = conditions[0]
for condition in conditions[1:]:
output = ConditionalOp(output, condition)
else:
return OpDefault(None, None)
return output
class Op(object):
"""
Base class for a FilterExpression operator
"""
OP = ""
def __init__(self, lhs, rhs):
self.lhs = lhs
self.rhs = rhs
def expr(self, item):
raise NotImplementedError("Expr not defined for {0}".format(type(self)))
def __repr__(self):
return "({0} {1} {2})".format(self.lhs, self.OP, self.rhs)
# TODO add tests for all of these
EQ_FUNCTION = lambda item_value, test_value: item_value == test_value # noqa
NE_FUNCTION = lambda item_value, test_value: item_value != test_value # noqa
LE_FUNCTION = lambda item_value, test_value: item_value <= test_value # noqa
LT_FUNCTION = lambda item_value, test_value: item_value < test_value # noqa
GE_FUNCTION = lambda item_value, test_value: item_value >= test_value # noqa
GT_FUNCTION = lambda item_value, test_value: item_value > test_value # noqa
COMPARISON_FUNCS = {
"EQ": EQ_FUNCTION,
"=": EQ_FUNCTION,
"NE": NE_FUNCTION,
"!=": NE_FUNCTION,
"LE": LE_FUNCTION,
"<=": LE_FUNCTION,
"LT": LT_FUNCTION,
"<": LT_FUNCTION,
"GE": GE_FUNCTION,
">=": GE_FUNCTION,
"GT": GT_FUNCTION,
">": GT_FUNCTION,
# NULL means the value should not exist at all
"NULL": lambda item_value: False,
# NOT_NULL means the value merely has to exist, and values of None are valid
"NOT_NULL": lambda item_value: True,
"CONTAINS": lambda item_value, test_value: test_value in item_value,
"NOT_CONTAINS": lambda item_value, test_value: test_value not in item_value,
"BEGINS_WITH": lambda item_value, test_value: item_value.startswith(test_value),
"IN": lambda item_value, *test_values: item_value in test_values,
"BETWEEN": lambda item_value, lower_test_value, upper_test_value: lower_test_value
<= item_value
<= upper_test_value,
}
def get_comparison_func(range_comparison):
return COMPARISON_FUNCS.get(range_comparison)
class RecursionStopIteration(StopIteration):
pass
class ConditionExpressionParser:
def __init__(
self,
condition_expression,
expression_attribute_names,
expression_attribute_values,
):
self.condition_expression = condition_expression
self.expression_attribute_names = expression_attribute_names
self.expression_attribute_values = expression_attribute_values
def parse(self):
"""Returns a syntax tree for the expression.
The tree, and all of the nodes in the tree are a tuple of
- kind: str
- children/value:
list of nodes for parent nodes
value for leaf nodes
Raises ValueError if the condition expression is invalid
Raises KeyError if expression attribute names/values are invalid
Here are the types of nodes that can be returned.
The types of child nodes are denoted with a colon (:).
An arbitrary number of children is denoted with ...
Condition:
('OR', [lhs : Condition, rhs : Condition])
('AND', [lhs: Condition, rhs: Condition])
('NOT', [argument: Condition])
('PARENTHESES', [argument: Condition])
('FUNCTION', [('LITERAL', function_name: str), argument: Operand, ...])
('BETWEEN', [query: Operand, low: Operand, high: Operand])
('IN', [query: Operand, possible_value: Operand, ...])
('COMPARISON', [lhs: Operand, ('LITERAL', comparator: str), rhs: Operand])
Operand:
('EXPRESSION_ATTRIBUTE_VALUE', value: dict, e.g. {'S': 'foobar'})
('PATH', [('LITERAL', path_element: str), ...])
NOTE: Expression attribute names will be expanded
('FUNCTION', [('LITERAL', 'size'), argument: Operand])
Literal:
('LITERAL', value: str)
"""
if not self.condition_expression:
return OpDefault(None, None)
nodes = self._lex_condition_expression()
nodes = self._parse_paths(nodes)
# NOTE: The docs say that functions should be parsed after
# IN, BETWEEN, and comparisons like <=.
# However, these expressions are invalid as function arguments,
# so it is okay to parse functions first. This needs to be done
# to interpret size() correctly as an operand.
nodes = self._apply_functions(nodes)
nodes = self._apply_comparator(nodes)
nodes = self._apply_in(nodes)
nodes = self._apply_between(nodes)
nodes = self._apply_parens_and_booleans(nodes)
node = nodes[0]
op = self._make_op_condition(node)
return op
class Kind:
"""Enum defining types of nodes in the syntax tree."""
# Condition nodes
# ---------------
OR = "OR"
AND = "AND"
NOT = "NOT"
PARENTHESES = "PARENTHESES"
FUNCTION = "FUNCTION"
BETWEEN = "BETWEEN"
IN = "IN"
COMPARISON = "COMPARISON"
# Operand nodes
# -------------
EXPRESSION_ATTRIBUTE_VALUE = "EXPRESSION_ATTRIBUTE_VALUE"
PATH = "PATH"
# Literal nodes
# --------------
LITERAL = "LITERAL"
class Nonterminal:
"""Enum defining nonterminals for productions."""
CONDITION = "CONDITION"
OPERAND = "OPERAND"
COMPARATOR = "COMPARATOR"
FUNCTION_NAME = "FUNCTION_NAME"
IDENTIFIER = "IDENTIFIER"
AND = "AND"
OR = "OR"
NOT = "NOT"
BETWEEN = "BETWEEN"
IN = "IN"
COMMA = "COMMA"
LEFT_PAREN = "LEFT_PAREN"
RIGHT_PAREN = "RIGHT_PAREN"
WHITESPACE = "WHITESPACE"
Node = namedtuple("Node", ["nonterminal", "kind", "text", "value", "children"])
def _lex_condition_expression(self):
nodes = deque()
remaining_expression = self.condition_expression
while remaining_expression:
node, remaining_expression = self._lex_one_node(remaining_expression)
if node.nonterminal == self.Nonterminal.WHITESPACE:
continue
nodes.append(node)
return nodes
def _lex_one_node(self, remaining_expression):
# TODO: Handle indexing like [1]
attribute_regex = r"(:|#)?[A-z0-9\-_]+"
patterns = [
(self.Nonterminal.WHITESPACE, re.compile(r"^ +")),
(
self.Nonterminal.COMPARATOR,
re.compile(
"^("
# Put long expressions first for greedy matching
"<>|"
"<=|"
">=|"
"=|"
"<|"
">)"
),
),
(
self.Nonterminal.OPERAND,
re.compile(
r"^{attribute_regex}(\.{attribute_regex}|\[[0-9]\])*".format(
attribute_regex=attribute_regex
)
),
),
(self.Nonterminal.COMMA, re.compile(r"^,")),
(self.Nonterminal.LEFT_PAREN, re.compile(r"^\(")),
(self.Nonterminal.RIGHT_PAREN, re.compile(r"^\)")),
]
for nonterminal, pattern in patterns:
match = pattern.match(remaining_expression)
if match:
match_text = match.group()
break
else: # pragma: no cover
raise ValueError(
"Cannot parse condition starting at:{}".format(remaining_expression)
)
node = self.Node(
nonterminal=nonterminal,
kind=self.Kind.LITERAL,
text=match_text,
value=match_text,
children=[],
)
remaining_expression = remaining_expression[len(match_text) :]
return node, remaining_expression
def _parse_paths(self, nodes):
output = deque()
while nodes:
node = nodes.popleft()
if node.nonterminal == self.Nonterminal.OPERAND:
path = node.value.replace("[", ".[").split(".")
children = [self._parse_path_element(name) for name in path]
if len(children) == 1:
child = children[0]
if child.nonterminal != self.Nonterminal.IDENTIFIER:
output.append(child)
continue
else:
for child in children:
self._assert(
child.nonterminal == self.Nonterminal.IDENTIFIER,
"Cannot use {} in path".format(child.text),
[node],
)
output.append(
self.Node(
nonterminal=self.Nonterminal.OPERAND,
kind=self.Kind.PATH,
text=node.text,
value=None,
children=children,
)
)
else:
output.append(node)
return output
def _parse_path_element(self, name):
reserved = {
"and": self.Nonterminal.AND,
"or": self.Nonterminal.OR,
"in": self.Nonterminal.IN,
"between": self.Nonterminal.BETWEEN,
"not": self.Nonterminal.NOT,
}
functions = {
"attribute_exists",
"attribute_not_exists",
"attribute_type",
"begins_with",
"contains",
"size",
}
if name.lower() in reserved:
# e.g. AND
nonterminal = reserved[name.lower()]
return self.Node(
nonterminal=nonterminal,
kind=self.Kind.LITERAL,
text=name,
value=name,
children=[],
)
elif name in functions:
# e.g. attribute_exists
return self.Node(
nonterminal=self.Nonterminal.FUNCTION_NAME,
kind=self.Kind.LITERAL,
text=name,
value=name,
children=[],
)
elif name.startswith(":"):
# e.g. :value0
return self.Node(
nonterminal=self.Nonterminal.OPERAND,
kind=self.Kind.EXPRESSION_ATTRIBUTE_VALUE,
text=name,
value=self._lookup_expression_attribute_value(name),
children=[],
)
elif name.startswith("#"):
# e.g. #name0
return self.Node(
nonterminal=self.Nonterminal.IDENTIFIER,
kind=self.Kind.LITERAL,
text=name,
value=self._lookup_expression_attribute_name(name),
children=[],
)
elif name.startswith("["):
# e.g. [123]
if not name.endswith("]"): # pragma: no cover
raise ValueError("Bad path element {}".format(name))
return self.Node(
nonterminal=self.Nonterminal.IDENTIFIER,
kind=self.Kind.LITERAL,
text=name,
value=int(name[1:-1]),
children=[],
)
else:
# e.g. ItemId
return self.Node(
nonterminal=self.Nonterminal.IDENTIFIER,
kind=self.Kind.LITERAL,
text=name,
value=name,
children=[],
)
def _lookup_expression_attribute_value(self, name):
return self.expression_attribute_values[name]
def _lookup_expression_attribute_name(self, name):
return self.expression_attribute_names[name]
# NOTE: The following constructions are ordered from high precedence to low precedence
# according to
# https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.OperatorsAndFunctions.html#Expressions.OperatorsAndFunctions.Precedence
#
# = <> < <= > >=
# IN
# BETWEEN
# attribute_exists attribute_not_exists begins_with contains
# Parentheses
# NOT
# AND
# OR
#
# The grammar is taken from
# https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.OperatorsAndFunctions.html#Expressions.OperatorsAndFunctions.Syntax
#
# condition-expression ::=
# operand comparator operand
# operand BETWEEN operand AND operand
# operand IN ( operand (',' operand (, ...) ))
# function
# condition AND condition
# condition OR condition
# NOT condition
# ( condition )
#
# comparator ::=
# =
# <>
# <
# <=
# >
# >=
#
# function ::=
# attribute_exists (path)
# attribute_not_exists (path)
# attribute_type (path, type)
# begins_with (path, substr)
# contains (path, operand)
# size (path)
def _matches(self, nodes, production):
"""Check if the nodes start with the given production.
Parameters
----------
nodes: list of Node
production: list of str
The name of a Nonterminal, or '*' for anything
"""
if len(nodes) < len(production):
return False
for i in range(len(production)):
if production[i] == "*":
continue
expected = getattr(self.Nonterminal, production[i])
if nodes[i].nonterminal != expected:
return False
return True
def _apply_comparator(self, nodes):
"""Apply condition := operand comparator operand."""
output = deque()
while nodes:
if self._matches(nodes, ["*", "COMPARATOR"]):
self._assert(
self._matches(nodes, ["OPERAND", "COMPARATOR", "OPERAND"]),
"Bad comparison",
list(nodes)[:3],
)
lhs = nodes.popleft()
comparator = nodes.popleft()
rhs = nodes.popleft()
nodes.appendleft(
self.Node(
nonterminal=self.Nonterminal.CONDITION,
kind=self.Kind.COMPARISON,
text=" ".join([lhs.text, comparator.text, rhs.text]),
value=None,
children=[lhs, comparator, rhs],
)
)
else:
output.append(nodes.popleft())
return output
def _apply_in(self, nodes):
"""Apply condition := operand IN ( operand , ... )."""
output = deque()
while nodes:
if self._matches(nodes, ["*", "IN"]):
self._assert(
self._matches(nodes, ["OPERAND", "IN", "LEFT_PAREN"]),
"Bad IN expression",
list(nodes)[:3],
)
lhs = nodes.popleft()
in_node = nodes.popleft()
left_paren = nodes.popleft()
all_children = [lhs, in_node, left_paren]
rhs = []
while True:
if self._matches(nodes, ["OPERAND", "COMMA"]):
operand = nodes.popleft()
separator = nodes.popleft()
all_children += [operand, separator]
rhs.append(operand)
elif self._matches(nodes, ["OPERAND", "RIGHT_PAREN"]):
operand = nodes.popleft()
separator = nodes.popleft()
all_children += [operand, separator]
rhs.append(operand)
break # Close
else:
self._assert(False, "Bad IN expression starting at", nodes)
nodes.appendleft(
self.Node(
nonterminal=self.Nonterminal.CONDITION,
kind=self.Kind.IN,
text=" ".join([t.text for t in all_children]),
value=None,
children=[lhs] + rhs,
)
)
else:
output.append(nodes.popleft())
return output
def _apply_between(self, nodes):
"""Apply condition := operand BETWEEN operand AND operand."""
output = deque()
while nodes:
if self._matches(nodes, ["*", "BETWEEN"]):
self._assert(
self._matches(
nodes, ["OPERAND", "BETWEEN", "OPERAND", "AND", "OPERAND"]
),
"Bad BETWEEN expression",
list(nodes)[:5],
)
lhs = nodes.popleft()
between_node = nodes.popleft()
low = nodes.popleft()
and_node = nodes.popleft()
high = nodes.popleft()
all_children = [lhs, between_node, low, and_node, high]
nodes.appendleft(
self.Node(
nonterminal=self.Nonterminal.CONDITION,
kind=self.Kind.BETWEEN,
text=" ".join([t.text for t in all_children]),
value=None,
children=[lhs, low, high],
)
)
else:
output.append(nodes.popleft())
return output
def _apply_functions(self, nodes):
"""Apply condition := function_name (operand , ...)."""
output = deque()
either_kind = {self.Kind.PATH, self.Kind.EXPRESSION_ATTRIBUTE_VALUE}
expected_argument_kind_map = {
"attribute_exists": [{self.Kind.PATH}],
"attribute_not_exists": [{self.Kind.PATH}],
"attribute_type": [either_kind, {self.Kind.EXPRESSION_ATTRIBUTE_VALUE}],
"begins_with": [either_kind, either_kind],
"contains": [either_kind, either_kind],
"size": [{self.Kind.PATH}],
}
while nodes:
if self._matches(nodes, ["FUNCTION_NAME"]):
self._assert(
self._matches(
nodes, ["FUNCTION_NAME", "LEFT_PAREN", "OPERAND", "*"]
),
"Bad function expression at",
list(nodes)[:4],
)
function_name = nodes.popleft()
left_paren = nodes.popleft()
all_children = [function_name, left_paren]
arguments = []
while True:
if self._matches(nodes, ["OPERAND", "COMMA"]):
operand = nodes.popleft()
separator = nodes.popleft()
all_children += [operand, separator]
arguments.append(operand)
elif self._matches(nodes, ["OPERAND", "RIGHT_PAREN"]):
operand = nodes.popleft()
separator = nodes.popleft()
all_children += [operand, separator]
arguments.append(operand)
break # Close paren
else:
self._assert(
False,
"Bad function expression",
all_children + list(nodes)[:2],
)
expected_kinds = expected_argument_kind_map[function_name.value]
self._assert(
len(arguments) == len(expected_kinds),
"Wrong number of arguments in",
all_children,
)
for i in range(len(expected_kinds)):
self._assert(
arguments[i].kind in expected_kinds[i],
"Wrong type for argument %d in" % i,
all_children,
)
if function_name.value == "size":
nonterminal = self.Nonterminal.OPERAND
else:
nonterminal = self.Nonterminal.CONDITION
nodes.appendleft(
self.Node(
nonterminal=nonterminal,
kind=self.Kind.FUNCTION,
text=" ".join([t.text for t in all_children]),
value=None,
children=[function_name] + arguments,
)
)
else:
output.append(nodes.popleft())
return output
def _apply_parens_and_booleans(self, nodes, left_paren=None):
"""Apply condition := ( condition ) and booleans."""
output = deque()
while nodes:
if self._matches(nodes, ["LEFT_PAREN"]):
parsed = self._apply_parens_and_booleans(
nodes, left_paren=nodes.popleft()
)
self._assert(len(parsed) >= 1, "Failed to close parentheses at", nodes)
parens = parsed.popleft()
self._assert(
parens.kind == self.Kind.PARENTHESES,
"Failed to close parentheses at",
nodes,
)
output.append(parens)
nodes = parsed
elif self._matches(nodes, ["RIGHT_PAREN"]):
self._assert(left_paren is not None, "Unmatched ) at", nodes)
close_paren = nodes.popleft()
children = self._apply_booleans(output)
all_children = [left_paren] + list(children) + [close_paren]
return deque(
[
self.Node(
nonterminal=self.Nonterminal.CONDITION,
kind=self.Kind.PARENTHESES,
text=" ".join([t.text for t in all_children]),
value=None,
children=list(children),
)
]
+ list(nodes)
)
else:
output.append(nodes.popleft())
self._assert(left_paren is None, "Unmatched ( at", list(output))
return self._apply_booleans(output)
def _apply_booleans(self, nodes):
"""Apply and, or, and not constructions."""
nodes = self._apply_not(nodes)
nodes = self._apply_and(nodes)
nodes = self._apply_or(nodes)
# The expression should reduce to a single condition
self._assert(len(nodes) == 1, "Unexpected expression at", list(nodes)[1:])
self._assert(
nodes[0].nonterminal == self.Nonterminal.CONDITION,
"Incomplete condition",
nodes,
)
return nodes
def _apply_not(self, nodes):
"""Apply condition := NOT condition."""
output = deque()
while nodes:
if self._matches(nodes, ["NOT"]):
self._assert(
self._matches(nodes, ["NOT", "CONDITION"]),
"Bad NOT expression",
list(nodes)[:2],
)
not_node = nodes.popleft()
child = nodes.popleft()
nodes.appendleft(
self.Node(
nonterminal=self.Nonterminal.CONDITION,
kind=self.Kind.NOT,
text=" ".join([not_node.text, child.text]),
value=None,
children=[child],
)
)
else:
output.append(nodes.popleft())
return output
def _apply_and(self, nodes):
"""Apply condition := condition AND condition."""
output = deque()
while nodes:
if self._matches(nodes, ["*", "AND"]):
self._assert(
self._matches(nodes, ["CONDITION", "AND", "CONDITION"]),
"Bad AND expression",
list(nodes)[:3],
)
lhs = nodes.popleft()
and_node = nodes.popleft()
rhs = nodes.popleft()
all_children = [lhs, and_node, rhs]
nodes.appendleft(
self.Node(
nonterminal=self.Nonterminal.CONDITION,
kind=self.Kind.AND,
text=" ".join([t.text for t in all_children]),
value=None,
children=[lhs, rhs],
)
)
else:
output.append(nodes.popleft())
return output
def _apply_or(self, nodes):
"""Apply condition := condition OR condition."""
output = deque()
while nodes:
if self._matches(nodes, ["*", "OR"]):
self._assert(
self._matches(nodes, ["CONDITION", "OR", "CONDITION"]),
"Bad OR expression",
list(nodes)[:3],
)
lhs = nodes.popleft()
or_node = nodes.popleft()
rhs = nodes.popleft()
all_children = [lhs, or_node, rhs]
nodes.appendleft(
self.Node(
nonterminal=self.Nonterminal.CONDITION,
kind=self.Kind.OR,
text=" ".join([t.text for t in all_children]),
value=None,
children=[lhs, rhs],
)
)
else:
output.append(nodes.popleft())
return output
def _make_operand(self, node):
if node.kind == self.Kind.PATH:
return AttributePath([child.value for child in node.children])
elif node.kind == self.Kind.EXPRESSION_ATTRIBUTE_VALUE:
return AttributeValue(node.value)
elif node.kind == self.Kind.FUNCTION:
# size()
function_node = node.children[0]
arguments = node.children[1:]
function_name = function_node.value
arguments = [self._make_operand(arg) for arg in arguments]
return FUNC_CLASS[function_name](*arguments)
else: # pragma: no cover
raise ValueError("Unknown operand: %r" % node)
def _make_op_condition(self, node):
if node.kind == self.Kind.OR:
lhs, rhs = node.children
return OpOr(self._make_op_condition(lhs), self._make_op_condition(rhs))
elif node.kind == self.Kind.AND:
lhs, rhs = node.children
return OpAnd(self._make_op_condition(lhs), self._make_op_condition(rhs))
elif node.kind == self.Kind.NOT:
(child,) = node.children
return OpNot(self._make_op_condition(child))
elif node.kind == self.Kind.PARENTHESES:
(child,) = node.children
return self._make_op_condition(child)
elif node.kind == self.Kind.FUNCTION:
function_node = node.children[0]
arguments = node.children[1:]
function_name = function_node.value
arguments = [self._make_operand(arg) for arg in arguments]
return FUNC_CLASS[function_name](*arguments)
elif node.kind == self.Kind.BETWEEN:
query, low, high = node.children
return FuncBetween(
self._make_operand(query),
self._make_operand(low),
self._make_operand(high),
)
elif node.kind == self.Kind.IN:
query = node.children[0]
possible_values = node.children[1:]
query = self._make_operand(query)
possible_values = [self._make_operand(v) for v in possible_values]
return FuncIn(query, *possible_values)
elif node.kind == self.Kind.COMPARISON:
lhs, comparator, rhs = node.children
return COMPARATOR_CLASS[comparator.value](
self._make_operand(lhs), self._make_operand(rhs)
)
else: # pragma: no cover
raise ValueError("Unknown expression node kind %r" % node.kind)
def _assert(self, condition, message, nodes):
if not condition:
raise ValueError(message + " " + " ".join([t.text for t in nodes]))
class Operand(object):
def expr(self, item):
raise NotImplementedError
def get_type(self, item):
raise NotImplementedError
class AttributePath(Operand):
def __init__(self, path):
"""Initialize the AttributePath.
Parameters
----------
path: list of int/str
"""
assert len(path) >= 1
self.path = path
def _get_attr(self, item):
if item is None:
return None
base = self.path[0]
if base not in item.attrs:
return None
attr = item.attrs[base]
for name in self.path[1:]:
attr = attr.child_attr(name)
if attr is None:
return None
return attr
def expr(self, item):
attr = self._get_attr(item)
if attr is None:
return None
else:
return attr.cast_value
def get_type(self, item):
attr = self._get_attr(item)
if attr is None:
return None
else:
return attr.type
def __repr__(self):
return ".".join(self.path)
class AttributeValue(Operand):
def __init__(self, value):
"""Initialize the AttributePath.
Parameters
----------
value: dict
e.g. {'N': '1.234'}
"""
self.type = list(value.keys())[0]
self.value = value[self.type]
def expr(self, item):
# TODO: Reuse DynamoType code
if self.type == "N":
try:
return int(self.value)
except ValueError:
return float(self.value)
elif self.type in ["SS", "NS", "BS"]:
sub_type = self.type[0]
return set([AttributeValue({sub_type: v}).expr(item) for v in self.value])
elif self.type == "L":
return [AttributeValue(v).expr(item) for v in self.value]
elif self.type == "M":
return dict(
[(k, AttributeValue(v).expr(item)) for k, v in self.value.items()]
)
else:
return self.value
return self.value
def get_type(self, item):
return self.type
def __repr__(self):
return repr(self.value)
class OpDefault(Op):
OP = "NONE"
def expr(self, item):
"""If no condition is specified, always True."""
return True
class OpNot(Op):
OP = "NOT"
def __init__(self, lhs):
super(OpNot, self).__init__(lhs, None)
def expr(self, item):
lhs = self.lhs.expr(item)
return not lhs
def __str__(self):
return "({0} {1})".format(self.OP, self.lhs)
class OpAnd(Op):
OP = "AND"
def expr(self, item):
lhs = self.lhs.expr(item)
return lhs and self.rhs.expr(item)
class OpLessThan(Op):
OP = "<"
def expr(self, item):
lhs = self.lhs.expr(item)
rhs = self.rhs.expr(item)
# In python3 None is not a valid comparator when using < or > so must be handled specially
if lhs is not None and rhs is not None:
return lhs < rhs
else:
return False
class OpGreaterThan(Op):
OP = ">"
def expr(self, item):
lhs = self.lhs.expr(item)
rhs = self.rhs.expr(item)
# In python3 None is not a valid comparator when using < or > so must be handled specially
if lhs is not None and rhs is not None:
return lhs > rhs
else:
return False
class OpEqual(Op):
OP = "="
def expr(self, item):
lhs = self.lhs.expr(item)
rhs = self.rhs.expr(item)
return lhs == rhs
class OpNotEqual(Op):
OP = "<>"
def expr(self, item):
lhs = self.lhs.expr(item)
rhs = self.rhs.expr(item)
return lhs != rhs
class OpLessThanOrEqual(Op):
OP = "<="
def expr(self, item):
lhs = self.lhs.expr(item)
rhs = self.rhs.expr(item)
# In python3 None is not a valid comparator when using < or > so must be handled specially
if lhs is not None and rhs is not None:
return lhs <= rhs
else:
return False
class OpGreaterThanOrEqual(Op):
OP = ">="
def expr(self, item):
lhs = self.lhs.expr(item)
rhs = self.rhs.expr(item)
# In python3 None is not a valid comparator when using < or > so must be handled specially
if lhs is not None and rhs is not None:
return lhs >= rhs
else:
return False
class OpOr(Op):
OP = "OR"
def expr(self, item):
lhs = self.lhs.expr(item)
return lhs or self.rhs.expr(item)
class Func(object):
"""
Base class for a FilterExpression function
"""
FUNC = "Unknown"
def __init__(self, *arguments):
self.arguments = arguments
def expr(self, item):
raise NotImplementedError
def __repr__(self):
return "{0}({1})".format(
self.FUNC, " ".join([repr(arg) for arg in self.arguments])
)
class FuncAttrExists(Func):
FUNC = "attribute_exists"
def __init__(self, attribute):
self.attr = attribute
super(FuncAttrExists, self).__init__(attribute)
def expr(self, item):
return self.attr.get_type(item) is not None
def FuncAttrNotExists(attribute):
return OpNot(FuncAttrExists(attribute))
class FuncAttrType(Func):
FUNC = "attribute_type"
def __init__(self, attribute, _type):
self.attr = attribute
self.type = _type
super(FuncAttrType, self).__init__(attribute, _type)
def expr(self, item):
return self.attr.get_type(item) == self.type.expr(item)
class FuncBeginsWith(Func):
FUNC = "begins_with"
def __init__(self, attribute, substr):
self.attr = attribute
self.substr = substr
super(FuncBeginsWith, self).__init__(attribute, substr)
def expr(self, item):
if self.attr.get_type(item) != "S":
return False
if self.substr.get_type(item) != "S":
return False
return self.attr.expr(item).startswith(self.substr.expr(item))
class FuncContains(Func):
FUNC = "contains"
def __init__(self, attribute, operand):
self.attr = attribute
self.operand = operand
super(FuncContains, self).__init__(attribute, operand)
def expr(self, item):
if self.attr.get_type(item) in ("S", "SS", "NS", "BS", "L"):
try:
return self.operand.expr(item) in self.attr.expr(item)
except TypeError:
return False
return False
def FuncNotContains(attribute, operand):
return OpNot(FuncContains(attribute, operand))
class FuncSize(Func):
FUNC = "size"
def __init__(self, attribute):
self.attr = attribute
super(FuncSize, self).__init__(attribute)
def expr(self, item):
if self.attr.get_type(item) is None:
raise ValueError("Invalid attribute name {0}".format(self.attr))
if self.attr.get_type(item) in ("S", "SS", "NS", "B", "BS", "L", "M"):
return len(self.attr.expr(item))
raise ValueError("Invalid filter expression")
class FuncBetween(Func):
FUNC = "BETWEEN"
def __init__(self, attribute, start, end):
self.attr = attribute
self.start = start
self.end = end
super(FuncBetween, self).__init__(attribute, start, end)
def expr(self, item):
# In python3 None is not a valid comparator when using < or > so must be handled specially
start = self.start.expr(item)
attr = self.attr.expr(item)
end = self.end.expr(item)
if start and attr and end:
return start <= attr <= end
elif start is None and attr is None:
# None is between None and None as well as None is between None and any number
return True
elif start is None and attr and end:
return attr <= end
else:
return False
class FuncIn(Func):
FUNC = "IN"
def __init__(self, attribute, *possible_values):
self.attr = attribute
self.possible_values = possible_values
super(FuncIn, self).__init__(attribute, *possible_values)
def expr(self, item):
for possible_value in self.possible_values:
if self.attr.expr(item) == possible_value.expr(item):
return True
return False
COMPARATOR_CLASS = {
"<": OpLessThan,
">": OpGreaterThan,
"<=": OpLessThanOrEqual,
">=": OpGreaterThanOrEqual,
"=": OpEqual,
"<>": OpNotEqual,
}
FUNC_CLASS = {
"attribute_exists": FuncAttrExists,
"attribute_not_exists": FuncAttrNotExists,
"attribute_type": FuncAttrType,
"begins_with": FuncBeginsWith,
"contains": FuncContains,
"size": FuncSize,
"between": FuncBetween,
}