moto/moto/cloudwatch/models.py
Pieter Jordaan a8cd5fb7fd Change name of 'state' attribute of 'FakeAlarm' CloudWatch model to 'state_value'. This ensures that the 'StateValue' returned by 'describe_alarms' is correct.
The 'DESCRIBE_ALARMS_TEMPLATE' response template references a 'state_value' attribute on the 'FakeAlarm' model which does not exist; it is named 'state'.
This commit updates the attribute to be called 'state_value', in-line with the naming convention used elsewhere.
2018-01-08 13:18:50 +01:00

328 lines
10 KiB
Python

import json
from moto.core.utils import iso_8601_datetime_with_milliseconds
from moto.core import BaseBackend, BaseModel
from moto.core.exceptions import RESTError
import boto.ec2.cloudwatch
from datetime import datetime, timedelta
from dateutil.tz import tzutc
from .utils import make_arn_for_dashboard
DEFAULT_ACCOUNT_ID = 123456789012
_EMPTY_LIST = tuple()
class Dimension(object):
def __init__(self, name, value):
self.name = name
self.value = value
def daterange(start, stop, step=timedelta(days=1), inclusive=False):
"""
This method will iterate from `start` to `stop` datetimes with a timedelta step of `step`
(supports iteration forwards or backwards in time)
:param start: start datetime
:param stop: end datetime
:param step: step size as a timedelta
:param inclusive: if True, last item returned will be as step closest to `end` (or `end` if no remainder).
"""
# inclusive=False to behave like range by default
total_step_secs = step.total_seconds()
assert total_step_secs != 0
if total_step_secs > 0:
while start < stop:
yield start
start = start + step
else:
while stop < start:
yield start
start = start + step
if inclusive and start == stop:
yield start
class FakeAlarm(BaseModel):
def __init__(self, name, namespace, metric_name, comparison_operator, evaluation_periods,
period, threshold, statistic, description, dimensions, alarm_actions,
ok_actions, insufficient_data_actions, unit):
self.name = name
self.namespace = namespace
self.metric_name = metric_name
self.comparison_operator = comparison_operator
self.evaluation_periods = evaluation_periods
self.period = period
self.threshold = threshold
self.statistic = statistic
self.description = description
self.dimensions = [Dimension(dimension['name'], dimension[
'value']) for dimension in dimensions]
self.alarm_actions = alarm_actions
self.ok_actions = ok_actions
self.insufficient_data_actions = insufficient_data_actions
self.unit = unit
self.configuration_updated_timestamp = datetime.utcnow()
self.history = []
self.state_reason = ''
self.state_reason_data = '{}'
self.state_value = 'OK'
self.state_updated_timestamp = datetime.utcnow()
def update_state(self, reason, reason_data, state_value):
# History type, that then decides what the rest of the items are, can be one of ConfigurationUpdate | StateUpdate | Action
self.history.append(
('StateUpdate', self.state_reason, self.state_reason_data, self.state_value, self.state_updated_timestamp)
)
self.state_reason = reason
self.state_reason_data = reason_data
self.state_value = state_value
self.state_updated_timestamp = datetime.utcnow()
class MetricDatum(BaseModel):
def __init__(self, namespace, name, value, dimensions, timestamp):
self.namespace = namespace
self.name = name
self.value = value
self.timestamp = timestamp or datetime.utcnow().replace(tzinfo=tzutc())
self.dimensions = [Dimension(dimension['Name'], dimension[
'Value']) for dimension in dimensions]
class Dashboard(BaseModel):
def __init__(self, name, body):
# Guaranteed to be unique for now as the name is also the key of a dictionary where they are stored
self.arn = make_arn_for_dashboard(DEFAULT_ACCOUNT_ID, name)
self.name = name
self.body = body
self.last_modified = datetime.now()
@property
def last_modified_iso(self):
return self.last_modified.isoformat()
@property
def size(self):
return len(self)
def __len__(self):
return len(self.body)
def __repr__(self):
return '<CloudWatchDashboard {0}>'.format(self.name)
class Statistics:
def __init__(self, stats, dt):
self.timestamp = iso_8601_datetime_with_milliseconds(dt)
self.values = []
self.stats = stats
@property
def sample_count(self):
if 'SampleCount' not in self.stats:
return None
return len(self.values)
@property
def unit(self):
return None
@property
def sum(self):
if 'Sum' not in self.stats:
return None
return sum(self.values)
@property
def minimum(self):
if 'Minimum' not in self.stats:
return None
return min(self.values)
@property
def maximum(self):
if 'Maximum' not in self.stats:
return None
return max(self.values)
@property
def average(self):
if 'Average' not in self.stats:
return None
# when moto is 3.4+ we can switch to the statistics module
return sum(self.values) / len(self.values)
class CloudWatchBackend(BaseBackend):
def __init__(self):
self.alarms = {}
self.dashboards = {}
self.metric_data = []
def put_metric_alarm(self, name, namespace, metric_name, comparison_operator, evaluation_periods,
period, threshold, statistic, description, dimensions,
alarm_actions, ok_actions, insufficient_data_actions, unit):
alarm = FakeAlarm(name, namespace, metric_name, comparison_operator, evaluation_periods, period,
threshold, statistic, description, dimensions, alarm_actions,
ok_actions, insufficient_data_actions, unit)
self.alarms[name] = alarm
return alarm
def get_all_alarms(self):
return self.alarms.values()
@staticmethod
def _list_element_starts_with(items, needle):
"""True of any of the list elements starts with needle"""
for item in items:
if item.startswith(needle):
return True
return False
def get_alarms_by_action_prefix(self, action_prefix):
return [
alarm
for alarm in self.alarms.values()
if CloudWatchBackend._list_element_starts_with(
alarm.alarm_actions, action_prefix
)
]
def get_alarms_by_alarm_name_prefix(self, name_prefix):
return [
alarm
for alarm in self.alarms.values()
if alarm.name.startswith(name_prefix)
]
def get_alarms_by_alarm_names(self, alarm_names):
return [
alarm
for alarm in self.alarms.values()
if alarm.name in alarm_names
]
def get_alarms_by_state_value(self, target_state):
return filter(lambda alarm: alarm.state_value == target_state, self.alarms.values())
def delete_alarms(self, alarm_names):
for alarm_name in alarm_names:
self.alarms.pop(alarm_name, None)
def put_metric_data(self, namespace, metric_data):
for metric_member in metric_data:
self.metric_data.append(MetricDatum(
namespace, metric_member['MetricName'], float(metric_member['Value']), metric_member.get('Dimensions.member', _EMPTY_LIST), metric_member.get('Timestamp')))
def get_metric_statistics(self, namespace, metric_name, start_time, end_time, period, stats):
period_delta = timedelta(seconds=period)
filtered_data = [md for md in self.metric_data if
md.namespace == namespace and md.name == metric_name and start_time <= md.timestamp <= end_time]
# earliest to oldest
filtered_data = sorted(filtered_data, key=lambda x: x.timestamp)
if not filtered_data:
return []
idx = 0
data = list()
for dt in daterange(filtered_data[0].timestamp, filtered_data[-1].timestamp + period_delta, period_delta):
s = Statistics(stats, dt)
while idx < len(filtered_data) and filtered_data[idx].timestamp < (dt + period_delta):
s.values.append(filtered_data[idx].value)
idx += 1
if not s.values:
continue
data.append(s)
return data
def get_all_metrics(self):
return self.metric_data
def put_dashboard(self, name, body):
self.dashboards[name] = Dashboard(name, body)
def list_dashboards(self, prefix=''):
for key, value in self.dashboards.items():
if key.startswith(prefix):
yield value
def delete_dashboards(self, dashboards):
to_delete = set(dashboards)
all_dashboards = set(self.dashboards.keys())
left_over = to_delete - all_dashboards
if len(left_over) > 0:
# Some dashboards are not found
return False, 'The specified dashboard does not exist. [{0}]'.format(', '.join(left_over))
for dashboard in to_delete:
del self.dashboards[dashboard]
return True, None
def get_dashboard(self, dashboard):
return self.dashboards.get(dashboard)
def set_alarm_state(self, alarm_name, reason, reason_data, state_value):
try:
if reason_data is not None:
json.loads(reason_data)
except ValueError:
raise RESTError('InvalidFormat', 'StateReasonData is invalid JSON')
if alarm_name not in self.alarms:
raise RESTError('ResourceNotFound', 'Alarm {0} not found'.format(alarm_name), status=404)
if state_value not in ('OK', 'ALARM', 'INSUFFICIENT_DATA'):
raise RESTError('InvalidParameterValue', 'StateValue is not one of OK | ALARM | INSUFFICIENT_DATA')
self.alarms[alarm_name].update_state(reason, reason_data, state_value)
class LogGroup(BaseModel):
def __init__(self, spec):
# required
self.name = spec['LogGroupName']
# optional
self.tags = spec.get('Tags', [])
@classmethod
def create_from_cloudformation_json(cls, resource_name, cloudformation_json, region_name):
properties = cloudformation_json['Properties']
spec = {
'LogGroupName': properties['LogGroupName']
}
optional_properties = 'Tags'.split()
for prop in optional_properties:
if prop in properties:
spec[prop] = properties[prop]
return LogGroup(spec)
cloudwatch_backends = {}
for region in boto.ec2.cloudwatch.regions():
cloudwatch_backends[region.name] = CloudWatchBackend()