moto/tests/test_emr/test_emr.py
Taro Sato 7cd404808b Better EMR coverage and boto3 request/response handling
This revision includes:

- A handler for requests for which content-type is JSON (from boto3).

- A decorator (generate_boto3_response) to convert XML responses to
  JSON (for boto3). This way, existing response templates for boto can
  be shared for generating boto3 response.

- Utility class/functions to use botocore's service specification data
  (accessible under botocore.data) for type casting, from query
  parameters to Python objects and XML to JSON.

- Updates to response handlers/models to cover more EMR end points and
  mockable parameters
2016-10-13 16:48:07 -07:00

573 lines
21 KiB
Python

from __future__ import unicode_literals
import boto
from boto.emr.bootstrap_action import BootstrapAction
from boto.emr.instance_group import InstanceGroup
from boto.emr.step import StreamingStep
import six
import sure # noqa
from moto import mock_emr
from tests.helpers import requires_boto_gte
run_jobflow_args = dict(
job_flow_role='EMR_EC2_DefaultRole',
keep_alive=True,
log_uri='s3://some_bucket/jobflow_logs',
master_instance_type='c1.medium',
name='My jobflow',
num_instances=2,
service_role='EMR_DefaultRole',
slave_instance_type='c1.medium',
)
input_instance_groups = [
InstanceGroup(1, 'MASTER', 'c1.medium', 'ON_DEMAND', 'master'),
InstanceGroup(3, 'CORE', 'c1.medium', 'ON_DEMAND', 'core'),
InstanceGroup(6, 'TASK', 'c1.large', 'SPOT', 'task-1', '0.07'),
InstanceGroup(10, 'TASK', 'c1.xlarge', 'SPOT', 'task-2', '0.05'),
]
@mock_emr
def test_describe_cluster():
conn = boto.connect_emr()
args = run_jobflow_args.copy()
args.update(dict(
api_params={
'Applications.member.1.Name': 'Spark',
'Applications.member.1.Version': '2.4.2',
'Configurations.member.1.Classification': 'yarn-site',
'Configurations.member.1.Properties.entry.1.key': 'someproperty',
'Configurations.member.1.Properties.entry.1.value': 'somevalue',
'Instances.EmrManagedMasterSecurityGroup': 'master-security-group',
'Instances.Ec2SubnetId': 'subnet-8be41cec',
},
availability_zone='us-east-2b',
ec2_keyname='mykey',
job_flow_role='EMR_EC2_DefaultRole',
keep_alive=False,
log_uri='s3://some_bucket/jobflow_logs',
name='My jobflow',
service_role='EMR_DefaultRole',
visible_to_all_users=True,
))
cluster_id = conn.run_jobflow(**args)
input_tags = {'tag1': 'val1', 'tag2': 'val2'}
conn.add_tags(cluster_id, input_tags)
cluster = conn.describe_cluster(cluster_id)
cluster.applications[0].name.should.equal('Spark')
cluster.applications[0].version.should.equal('2.4.2')
cluster.autoterminate.should.equal('true')
# configurations appear not be supplied as attributes?
attrs = cluster.ec2instanceattributes
# AdditionalMasterSecurityGroups
# AdditionalSlaveSecurityGroups
attrs.ec2availabilityzone.should.equal(args['availability_zone'])
attrs.ec2keyname.should.equal(args['ec2_keyname'])
attrs.ec2subnetid.should.equal(args['api_params']['Instances.Ec2SubnetId'])
# EmrManagedMasterSecurityGroups
# EmrManagedSlaveSecurityGroups
attrs.iaminstanceprofile.should.equal(args['job_flow_role'])
# ServiceAccessSecurityGroup
cluster.id.should.equal(cluster_id)
cluster.loguri.should.equal(args['log_uri'])
cluster.masterpublicdnsname.should.be.a(six.string_types)
cluster.name.should.equal(args['name'])
int(cluster.normalizedinstancehours).should.equal(0)
# cluster.release_label
cluster.shouldnt.have.property('requestedamiversion')
cluster.runningamiversion.should.equal('1.0.0')
# cluster.securityconfiguration
cluster.servicerole.should.equal(args['service_role'])
cluster.status.state.should.equal('TERMINATED')
cluster.status.statechangereason.message.should.be.a(six.string_types)
cluster.status.statechangereason.code.should.be.a(six.string_types)
cluster.status.timeline.creationdatetime.should.be.a(six.string_types)
# cluster.status.timeline.enddatetime.should.be.a(six.string_types)
# cluster.status.timeline.readydatetime.should.be.a(six.string_types)
dict((item.key, item.value) for item in cluster.tags).should.equal(input_tags)
cluster.terminationprotected.should.equal('false')
cluster.visibletoallusers.should.equal('true')
@mock_emr
def test_describe_jobflows():
conn = boto.connect_emr()
job1_id = conn.run_jobflow(**run_jobflow_args)
job2_id = conn.run_jobflow(**run_jobflow_args)
jobs = conn.describe_jobflows()
jobs.should.have.length_of(2)
jobs = conn.describe_jobflows(jobflow_ids=[job2_id])
jobs.should.have.length_of(1)
jobs[0].jobflowid.should.equal(job2_id)
first_job = conn.describe_jobflow(job1_id)
first_job.jobflowid.should.equal(job1_id)
@mock_emr
def test_describe_jobflow():
conn = boto.connect_emr()
args = run_jobflow_args.copy()
args.update(dict(
ami_version='3.8.1',
api_params={
#'Applications.member.1.Name': 'Spark',
#'Applications.member.1.Version': '2.4.2',
#'Configurations.member.1.Classification': 'yarn-site',
#'Configurations.member.1.Properties.entry.1.key': 'someproperty',
#'Configurations.member.1.Properties.entry.1.value': 'somevalue',
#'Instances.EmrManagedMasterSecurityGroup': 'master-security-group',
'Instances.Ec2SubnetId': 'subnet-8be41cec',
},
ec2_keyname='mykey',
hadoop_version='2.4.0',
name='My jobflow',
log_uri='s3://some_bucket/jobflow_logs',
keep_alive=True,
master_instance_type='c1.medium',
slave_instance_type='c1.medium',
num_instances=2,
availability_zone='us-west-2b',
job_flow_role='EMR_EC2_DefaultRole',
service_role='EMR_DefaultRole',
visible_to_all_users=True,
))
cluster_id = conn.run_jobflow(**args)
jf = conn.describe_jobflow(cluster_id)
jf.amiversion.should.equal(args['ami_version'])
jf.bootstrapactions.should.equal(None)
jf.creationdatetime.should.be.a(six.string_types)
jf.should.have.property('laststatechangereason')
jf.readydatetime.should.be.a(six.string_types)
jf.startdatetime.should.be.a(six.string_types)
jf.state.should.equal('WAITING')
jf.ec2keyname.should.equal(args['ec2_keyname'])
# Ec2SubnetId
jf.hadoopversion.should.equal(args['hadoop_version'])
int(jf.instancecount).should.equal(2)
for ig in jf.instancegroups:
ig.creationdatetime.should.be.a(six.string_types)
# ig.enddatetime.should.be.a(six.string_types)
ig.should.have.property('instancegroupid').being.a(six.string_types)
int(ig.instancerequestcount).should.equal(1)
ig.instancerole.should.be.within(['MASTER', 'CORE'])
int(ig.instancerunningcount).should.equal(1)
ig.instancetype.should.equal('c1.medium')
ig.laststatechangereason.should.be.a(six.string_types)
ig.market.should.equal('ON_DEMAND')
ig.name.should.be.a(six.string_types)
ig.readydatetime.should.be.a(six.string_types)
ig.startdatetime.should.be.a(six.string_types)
ig.state.should.equal('RUNNING')
jf.keepjobflowalivewhennosteps.should.equal('true')
jf.masterinstanceid.should.be.a(six.string_types)
jf.masterinstancetype.should.equal(args['master_instance_type'])
jf.masterpublicdnsname.should.be.a(six.string_types)
int(jf.normalizedinstancehours).should.equal(0)
jf.availabilityzone.should.equal(args['availability_zone'])
jf.slaveinstancetype.should.equal(args['slave_instance_type'])
jf.terminationprotected.should.equal('false')
jf.jobflowid.should.equal(cluster_id)
# jf.jobflowrole.should.equal(args['job_flow_role'])
jf.loguri.should.equal(args['log_uri'])
jf.name.should.equal(args['name'])
# jf.servicerole.should.equal(args['service_role'])
jf.steps.should.have.length_of(0)
list(i.value for i in jf.supported_products).should.equal([])
jf.visibletoallusers.should.equal('true')
@mock_emr
def test_list_clusters():
conn = boto.connect_emr()
args = run_jobflow_args.copy()
args['name'] = 'jobflow1'
cluster1_id = conn.run_jobflow(**args)
args['name'] = 'jobflow2'
cluster2_id = conn.run_jobflow(**args)
conn.terminate_jobflow(cluster2_id)
summary = conn.list_clusters()
clusters = summary.clusters
clusters.should.have.length_of(2)
expected = {
cluster1_id: {
'id': cluster1_id,
'name': 'jobflow1',
'normalizedinstancehours': 0,
'state': 'WAITING'},
cluster2_id: {
'id': cluster2_id,
'name': 'jobflow2',
'normalizedinstancehours': 0,
'state': 'TERMINATED'},
}
for x in clusters:
y = expected[x.id]
x.id.should.equal(y['id'])
x.name.should.equal(y['name'])
int(x.normalizedinstancehours).should.equal(y['normalizedinstancehours'])
x.status.state.should.equal(y['state'])
x.status.timeline.creationdatetime.should.be.a(six.string_types)
if y['state'] == 'TERMINATED':
x.status.timeline.enddatetime.should.be.a(six.string_types)
else:
x.status.timeline.shouldnt.have.property('enddatetime')
x.status.timeline.readydatetime.should.be.a(six.string_types)
@mock_emr
def test_run_jobflow():
conn = boto.connect_emr()
args = run_jobflow_args.copy()
job_id = conn.run_jobflow(**args)
job_flow = conn.describe_jobflow(job_id)
job_flow.state.should.equal('WAITING')
job_flow.jobflowid.should.equal(job_id)
job_flow.name.should.equal(args['name'])
job_flow.masterinstancetype.should.equal(args['master_instance_type'])
job_flow.slaveinstancetype.should.equal(args['slave_instance_type'])
job_flow.loguri.should.equal(args['log_uri'])
job_flow.visibletoallusers.should.equal('false')
int(job_flow.normalizedinstancehours).should.equal(0)
job_flow.steps.should.have.length_of(0)
@mock_emr
def test_run_jobflow_in_multiple_regions():
regions = {}
for region in ['us-east-1', 'eu-west-1']:
conn = boto.emr.connect_to_region(region)
args = run_jobflow_args.copy()
args['name'] = region
cluster_id = conn.run_jobflow(**args)
regions[region] = {'conn': conn, 'cluster_id': cluster_id}
for region in regions.keys():
conn = regions[region]['conn']
jf = conn.describe_jobflow(regions[region]['cluster_id'])
jf.name.should.equal(region)
@requires_boto_gte("2.8")
@mock_emr
def test_run_jobflow_with_new_params():
# Test that run_jobflow works with newer params
conn = boto.connect_emr()
conn.run_jobflow(**run_jobflow_args)
@requires_boto_gte("2.8")
@mock_emr
def test_run_jobflow_with_visible_to_all_users():
conn = boto.connect_emr()
for expected in (True, False):
job_id = conn.run_jobflow(
visible_to_all_users=expected,
**run_jobflow_args
)
job_flow = conn.describe_jobflow(job_id)
job_flow.visibletoallusers.should.equal(str(expected).lower())
@requires_boto_gte("2.8")
@mock_emr
def test_run_jobflow_with_instance_groups():
input_groups = dict((g.name, g) for g in input_instance_groups)
conn = boto.connect_emr()
job_id = conn.run_jobflow(instance_groups=input_instance_groups,
**run_jobflow_args)
job_flow = conn.describe_jobflow(job_id)
int(job_flow.instancecount).should.equal(sum(g.num_instances for g in input_instance_groups))
for instance_group in job_flow.instancegroups:
expected = input_groups[instance_group.name]
instance_group.should.have.property('instancegroupid')
int(instance_group.instancerunningcount).should.equal(expected.num_instances)
instance_group.instancerole.should.equal(expected.role)
instance_group.instancetype.should.equal(expected.type)
instance_group.market.should.equal(expected.market)
if hasattr(expected, 'bidprice'):
instance_group.bidprice.should.equal(expected.bidprice)
@requires_boto_gte("2.8")
@mock_emr
def test_set_termination_protection():
conn = boto.connect_emr()
job_id = conn.run_jobflow(**run_jobflow_args)
job_flow = conn.describe_jobflow(job_id)
job_flow.terminationprotected.should.equal('false')
conn.set_termination_protection(job_id, True)
job_flow = conn.describe_jobflow(job_id)
job_flow.terminationprotected.should.equal('true')
conn.set_termination_protection(job_id, False)
job_flow = conn.describe_jobflow(job_id)
job_flow.terminationprotected.should.equal('false')
@requires_boto_gte("2.8")
@mock_emr
def test_set_visible_to_all_users():
conn = boto.connect_emr()
args = run_jobflow_args.copy()
args['visible_to_all_users'] = False
job_id = conn.run_jobflow(**args)
job_flow = conn.describe_jobflow(job_id)
job_flow.visibletoallusers.should.equal('false')
conn.set_visible_to_all_users(job_id, True)
job_flow = conn.describe_jobflow(job_id)
job_flow.visibletoallusers.should.equal('true')
conn.set_visible_to_all_users(job_id, False)
job_flow = conn.describe_jobflow(job_id)
job_flow.visibletoallusers.should.equal('false')
@mock_emr
def test_terminate_jobflow():
conn = boto.connect_emr()
job_id = conn.run_jobflow(**run_jobflow_args)
flow = conn.describe_jobflows()[0]
flow.state.should.equal('WAITING')
conn.terminate_jobflow(job_id)
flow = conn.describe_jobflows()[0]
flow.state.should.equal('TERMINATED')
# testing multiple end points for each feature
@mock_emr
def test_bootstrap_actions():
bootstrap_actions = [
BootstrapAction(
name='bs1',
path='path/to/script',
bootstrap_action_args=['arg1', 'arg2']),
BootstrapAction(
name='bs2',
path='path/to/anotherscript',
bootstrap_action_args=[])
]
conn = boto.connect_emr()
cluster_id = conn.run_jobflow(
bootstrap_actions=bootstrap_actions,
**run_jobflow_args
)
jf = conn.describe_jobflow(cluster_id)
for x, y in zip(jf.bootstrapactions, bootstrap_actions):
x.name.should.equal(y.name)
x.path.should.equal(y.path)
list(o.value for o in x.args).should.equal(y.args())
resp = conn.list_bootstrap_actions(cluster_id)
for i, y in enumerate(bootstrap_actions):
x = resp.actions[i]
x.name.should.equal(y.name)
x.scriptpath.should.equal(y.path)
list(arg.value for arg in x.args).should.equal(y.args())
@mock_emr
def test_instance_groups():
input_groups = dict((g.name, g) for g in input_instance_groups)
conn = boto.connect_emr()
args = run_jobflow_args.copy()
for key in ['master_instance_type', 'slave_instance_type', 'num_instances']:
del args[key]
args['instance_groups'] = input_instance_groups[:2]
job_id = conn.run_jobflow(**args)
jf = conn.describe_jobflow(job_id)
base_instance_count = int(jf.instancecount)
conn.add_instance_groups(job_id, input_instance_groups[2:])
jf = conn.describe_jobflow(job_id)
int(jf.instancecount).should.equal(sum(g.num_instances for g in input_instance_groups))
for x in jf.instancegroups:
y = input_groups[x.name]
if hasattr(y, 'bidprice'):
x.bidprice.should.equal(y.bidprice)
x.creationdatetime.should.be.a(six.string_types)
# x.enddatetime.should.be.a(six.string_types)
x.should.have.property('instancegroupid')
int(x.instancerequestcount).should.equal(y.num_instances)
x.instancerole.should.equal(y.role)
int(x.instancerunningcount).should.equal(y.num_instances)
x.instancetype.should.equal(y.type)
x.laststatechangereason.should.be.a(six.string_types)
x.market.should.equal(y.market)
x.name.should.be.a(six.string_types)
x.readydatetime.should.be.a(six.string_types)
x.startdatetime.should.be.a(six.string_types)
x.state.should.equal('RUNNING')
for x in conn.list_instance_groups(job_id).instancegroups:
y = input_groups[x.name]
if hasattr(y, 'bidprice'):
x.bidprice.should.equal(y.bidprice)
# Configurations
# EbsBlockDevices
# EbsOptimized
x.should.have.property('id')
x.instancegrouptype.should.equal(y.role)
x.instancetype.should.equal(y.type)
x.market.should.equal(y.market)
x.name.should.equal(y.name)
int(x.requestedinstancecount).should.equal(y.num_instances)
int(x.runninginstancecount).should.equal(y.num_instances)
# ShrinkPolicy
x.status.state.should.equal('RUNNING')
x.status.statechangereason.code.should.be.a(six.string_types)
x.status.statechangereason.message.should.be.a(six.string_types)
x.status.timeline.creationdatetime.should.be.a(six.string_types)
# x.status.timeline.enddatetime.should.be.a(six.string_types)
x.status.timeline.readydatetime.should.be.a(six.string_types)
igs = dict((g.name, g) for g in jf.instancegroups)
conn.modify_instance_groups(
[igs['task-1'].instancegroupid, igs['task-2'].instancegroupid],
[2, 3])
jf = conn.describe_jobflow(job_id)
int(jf.instancecount).should.equal(base_instance_count + 5)
igs = dict((g.name, g) for g in jf.instancegroups)
int(igs['task-1'].instancerunningcount).should.equal(2)
int(igs['task-2'].instancerunningcount).should.equal(3)
@mock_emr
def test_steps():
input_steps = [
StreamingStep(
name='My wordcount example',
mapper='s3n://elasticmapreduce/samples/wordcount/wordSplitter.py',
reducer='aggregate',
input='s3n://elasticmapreduce/samples/wordcount/input',
output='s3n://output_bucket/output/wordcount_output'),
StreamingStep(
name='My wordcount example2',
mapper='s3n://elasticmapreduce/samples/wordcount/wordSplitter2.py',
reducer='aggregate',
input='s3n://elasticmapreduce/samples/wordcount/input2',
output='s3n://output_bucket/output/wordcount_output2')
]
# TODO: implementation and test for cancel_steps
conn = boto.connect_emr()
cluster_id = conn.run_jobflow(
steps=[input_steps[0]],
**run_jobflow_args)
jf = conn.describe_jobflow(cluster_id)
jf.steps.should.have.length_of(1)
conn.add_jobflow_steps(cluster_id, [input_steps[1]])
jf = conn.describe_jobflow(cluster_id)
jf.steps.should.have.length_of(2)
for step in jf.steps:
step.actiononfailure.should.equal('TERMINATE_JOB_FLOW')
list(arg.value for arg in step.args).should.have.length_of(8)
step.creationdatetime.should.be.a(six.string_types)
# step.enddatetime.should.be.a(six.string_types)
step.jar.should.equal('/home/hadoop/contrib/streaming/hadoop-streaming.jar')
step.laststatechangereason.should.be.a(six.string_types)
step.mainclass.should.equal('')
step.name.should.be.a(six.string_types)
# step.readydatetime.should.be.a(six.string_types)
# step.startdatetime.should.be.a(six.string_types)
step.state.should.be.within(['STARTING', 'PENDING'])
expected = dict((s.name, s) for s in input_steps)
for x in conn.list_steps(cluster_id).steps:
y = expected[x.name]
# actiononfailure
list(arg.value for arg in x.config.args).should.equal([
'-mapper', y.mapper,
'-reducer', y.reducer,
'-input', y.input,
'-output', y.output,
])
x.config.jar.should.equal('/home/hadoop/contrib/streaming/hadoop-streaming.jar')
x.config.mainclass.should.equal('')
# properties
x.should.have.property('id').should.be.a(six.string_types)
x.name.should.equal(y.name)
x.status.state.should.be.within(['STARTING', 'PENDING'])
# x.status.statechangereason
x.status.timeline.creationdatetime.should.be.a(six.string_types)
# x.status.timeline.enddatetime.should.be.a(six.string_types)
# x.status.timeline.startdatetime.should.be.a(six.string_types)
x = conn.describe_step(cluster_id, x.id)
list(arg.value for arg in x.config.args).should.equal([
'-mapper', y.mapper,
'-reducer', y.reducer,
'-input', y.input,
'-output', y.output,
])
x.config.jar.should.equal('/home/hadoop/contrib/streaming/hadoop-streaming.jar')
x.config.mainclass.should.equal('')
# properties
x.should.have.property('id').should.be.a(six.string_types)
x.name.should.equal(y.name)
x.status.state.should.be.within(['STARTING', 'PENDING'])
# x.status.statechangereason
x.status.timeline.creationdatetime.should.be.a(six.string_types)
# x.status.timeline.enddatetime.should.be.a(six.string_types)
# x.status.timeline.startdatetime.should.be.a(six.string_types)
@mock_emr
def test_tags():
input_tags = {"tag1": "val1", "tag2": "val2"}
conn = boto.connect_emr()
cluster_id = conn.run_jobflow(**run_jobflow_args)
conn.add_tags(cluster_id, input_tags)
cluster = conn.describe_cluster(cluster_id)
cluster.tags.should.have.length_of(2)
dict((t.key, t.value) for t in cluster.tags).should.equal(input_tags)
conn.remove_tags(cluster_id, list(input_tags.keys()))
cluster = conn.describe_cluster(cluster_id)
cluster.tags.should.have.length_of(0)