457 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			457 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import unicode_literals
 | 
						|
 | 
						|
import boto
 | 
						|
from boto.emr.instance_group import InstanceGroup
 | 
						|
 | 
						|
from boto.emr.step import StreamingStep
 | 
						|
import sure  # noqa
 | 
						|
 | 
						|
from moto import mock_emr
 | 
						|
from tests.helpers import requires_boto_gte
 | 
						|
 | 
						|
 | 
						|
@mock_emr
 | 
						|
def test_create_job_flow_in_multiple_regions():
 | 
						|
    step = StreamingStep(
 | 
						|
        name='My wordcount example',
 | 
						|
        mapper='s3n://elasticmapreduce/samples/wordcount/wordSplitter.py',
 | 
						|
        reducer='aggregate',
 | 
						|
        input='s3n://elasticmapreduce/samples/wordcount/input',
 | 
						|
        output='s3n://output_bucket/output/wordcount_output'
 | 
						|
    )
 | 
						|
 | 
						|
    west1_conn = boto.emr.connect_to_region('us-east-1')
 | 
						|
    west1_job_id = west1_conn.run_jobflow(
 | 
						|
        name='us-east-1',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        master_instance_type='m1.medium',
 | 
						|
        slave_instance_type='m1.small',
 | 
						|
        steps=[step],
 | 
						|
    )
 | 
						|
 | 
						|
    west2_conn = boto.emr.connect_to_region('eu-west-1')
 | 
						|
    west2_job_id = west2_conn.run_jobflow(
 | 
						|
        name='eu-west-1',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        master_instance_type='m1.medium',
 | 
						|
        slave_instance_type='m1.small',
 | 
						|
        steps=[step],
 | 
						|
    )
 | 
						|
 | 
						|
    west1_job_flow = west1_conn.describe_jobflow(west1_job_id)
 | 
						|
    west1_job_flow.name.should.equal('us-east-1')
 | 
						|
    west2_job_flow = west2_conn.describe_jobflow(west2_job_id)
 | 
						|
    west2_job_flow.name.should.equal('eu-west-1')
 | 
						|
 | 
						|
 | 
						|
@mock_emr
 | 
						|
def test_create_job_flow():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
 | 
						|
    step1 = StreamingStep(
 | 
						|
        name='My wordcount example',
 | 
						|
        mapper='s3n://elasticmapreduce/samples/wordcount/wordSplitter.py',
 | 
						|
        reducer='aggregate',
 | 
						|
        input='s3n://elasticmapreduce/samples/wordcount/input',
 | 
						|
        output='s3n://output_bucket/output/wordcount_output'
 | 
						|
    )
 | 
						|
 | 
						|
    step2 = StreamingStep(
 | 
						|
        name='My wordcount example2',
 | 
						|
        mapper='s3n://elasticmapreduce/samples/wordcount/wordSplitter2.py',
 | 
						|
        reducer='aggregate',
 | 
						|
        input='s3n://elasticmapreduce/samples/wordcount/input2',
 | 
						|
        output='s3n://output_bucket/output/wordcount_output2'
 | 
						|
    )
 | 
						|
 | 
						|
    job_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        master_instance_type='m1.medium',
 | 
						|
        slave_instance_type='m1.small',
 | 
						|
        steps=[step1, step2],
 | 
						|
    )
 | 
						|
 | 
						|
    job_flow = conn.describe_jobflow(job_id)
 | 
						|
    job_flow.state.should.equal('STARTING')
 | 
						|
    job_flow.jobflowid.should.equal(job_id)
 | 
						|
    job_flow.name.should.equal('My jobflow')
 | 
						|
    job_flow.masterinstancetype.should.equal('m1.medium')
 | 
						|
    job_flow.slaveinstancetype.should.equal('m1.small')
 | 
						|
    job_flow.loguri.should.equal('s3://some_bucket/jobflow_logs')
 | 
						|
    job_flow.visibletoallusers.should.equal('False')
 | 
						|
    int(job_flow.normalizedinstancehours).should.equal(0)
 | 
						|
    job_step = job_flow.steps[0]
 | 
						|
    job_step.name.should.equal('My wordcount example')
 | 
						|
    job_step.state.should.equal('STARTING')
 | 
						|
    args = [arg.value for arg in job_step.args]
 | 
						|
    args.should.equal([
 | 
						|
        '-mapper',
 | 
						|
        's3n://elasticmapreduce/samples/wordcount/wordSplitter.py',
 | 
						|
        '-reducer',
 | 
						|
        'aggregate',
 | 
						|
        '-input',
 | 
						|
        's3n://elasticmapreduce/samples/wordcount/input',
 | 
						|
        '-output',
 | 
						|
        's3n://output_bucket/output/wordcount_output',
 | 
						|
    ])
 | 
						|
 | 
						|
    job_step2 = job_flow.steps[1]
 | 
						|
    job_step2.name.should.equal('My wordcount example2')
 | 
						|
    job_step2.state.should.equal('PENDING')
 | 
						|
    args = [arg.value for arg in job_step2.args]
 | 
						|
    args.should.equal([
 | 
						|
        '-mapper',
 | 
						|
        's3n://elasticmapreduce/samples/wordcount/wordSplitter2.py',
 | 
						|
        '-reducer',
 | 
						|
        'aggregate',
 | 
						|
        '-input',
 | 
						|
        's3n://elasticmapreduce/samples/wordcount/input2',
 | 
						|
        '-output',
 | 
						|
        's3n://output_bucket/output/wordcount_output2',
 | 
						|
    ])
 | 
						|
 | 
						|
 | 
						|
@requires_boto_gte("2.8")
 | 
						|
@mock_emr
 | 
						|
def test_create_job_flow_with_new_params():
 | 
						|
    # Test that run_jobflow works with newer params
 | 
						|
    conn = boto.connect_emr()
 | 
						|
 | 
						|
    conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        master_instance_type='m1.medium',
 | 
						|
        slave_instance_type='m1.small',
 | 
						|
        job_flow_role='some-role-arn',
 | 
						|
        steps=[],
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@requires_boto_gte("2.8")
 | 
						|
@mock_emr
 | 
						|
def test_create_job_flow_visible_to_all_users():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
 | 
						|
    job_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[],
 | 
						|
        visible_to_all_users=True,
 | 
						|
    )
 | 
						|
    job_flow = conn.describe_jobflow(job_id)
 | 
						|
    job_flow.visibletoallusers.should.equal('True')
 | 
						|
 | 
						|
 | 
						|
@requires_boto_gte("2.8")
 | 
						|
@mock_emr
 | 
						|
def test_create_job_flow_with_instance_groups():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
 | 
						|
    instance_groups = [InstanceGroup(6, 'TASK', 'c1.medium', 'SPOT', 'spot-0.07', '0.07'),
 | 
						|
                       InstanceGroup(6, 'TASK', 'c1.medium', 'SPOT', 'spot-0.07', '0.07')]
 | 
						|
    job_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[],
 | 
						|
        instance_groups=instance_groups
 | 
						|
    )
 | 
						|
 | 
						|
    job_flow = conn.describe_jobflow(job_id)
 | 
						|
    int(job_flow.instancecount).should.equal(12)
 | 
						|
    instance_group = job_flow.instancegroups[0]
 | 
						|
    int(instance_group.instancerunningcount).should.equal(6)
 | 
						|
 | 
						|
 | 
						|
@mock_emr
 | 
						|
def test_terminate_job_flow():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
    job_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[]
 | 
						|
    )
 | 
						|
 | 
						|
    flow = conn.describe_jobflows()[0]
 | 
						|
    flow.state.should.equal('STARTING')
 | 
						|
    conn.terminate_jobflow(job_id)
 | 
						|
    flow = conn.describe_jobflows()[0]
 | 
						|
    flow.state.should.equal('TERMINATED')
 | 
						|
 | 
						|
 | 
						|
@mock_emr
 | 
						|
def test_describe_job_flows():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
    job1_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[]
 | 
						|
    )
 | 
						|
    job2_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[]
 | 
						|
    )
 | 
						|
 | 
						|
    jobs = conn.describe_jobflows()
 | 
						|
    jobs.should.have.length_of(2)
 | 
						|
 | 
						|
    jobs = conn.describe_jobflows(jobflow_ids=[job2_id])
 | 
						|
    jobs.should.have.length_of(1)
 | 
						|
    jobs[0].jobflowid.should.equal(job2_id)
 | 
						|
 | 
						|
    first_job = conn.describe_jobflow(job1_id)
 | 
						|
    first_job.jobflowid.should.equal(job1_id)
 | 
						|
 | 
						|
 | 
						|
@mock_emr
 | 
						|
def test_add_steps_to_flow():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
 | 
						|
    step1 = StreamingStep(
 | 
						|
        name='My wordcount example',
 | 
						|
        mapper='s3n://elasticmapreduce/samples/wordcount/wordSplitter.py',
 | 
						|
        reducer='aggregate',
 | 
						|
        input='s3n://elasticmapreduce/samples/wordcount/input',
 | 
						|
        output='s3n://output_bucket/output/wordcount_output'
 | 
						|
    )
 | 
						|
 | 
						|
    job_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[step1]
 | 
						|
    )
 | 
						|
 | 
						|
    job_flow = conn.describe_jobflow(job_id)
 | 
						|
    job_flow.state.should.equal('STARTING')
 | 
						|
    job_flow.jobflowid.should.equal(job_id)
 | 
						|
    job_flow.name.should.equal('My jobflow')
 | 
						|
    job_flow.loguri.should.equal('s3://some_bucket/jobflow_logs')
 | 
						|
 | 
						|
    step2 = StreamingStep(
 | 
						|
        name='My wordcount example2',
 | 
						|
        mapper='s3n://elasticmapreduce/samples/wordcount/wordSplitter2.py',
 | 
						|
        reducer='aggregate',
 | 
						|
        input='s3n://elasticmapreduce/samples/wordcount/input2',
 | 
						|
        output='s3n://output_bucket/output/wordcount_output2'
 | 
						|
    )
 | 
						|
 | 
						|
    conn.add_jobflow_steps(job_id, [step2])
 | 
						|
 | 
						|
    job_flow = conn.describe_jobflow(job_id)
 | 
						|
    job_step = job_flow.steps[0]
 | 
						|
    job_step.name.should.equal('My wordcount example')
 | 
						|
    job_step.state.should.equal('STARTING')
 | 
						|
    args = [arg.value for arg in job_step.args]
 | 
						|
    args.should.equal([
 | 
						|
        '-mapper',
 | 
						|
        's3n://elasticmapreduce/samples/wordcount/wordSplitter.py',
 | 
						|
        '-reducer',
 | 
						|
        'aggregate',
 | 
						|
        '-input',
 | 
						|
        's3n://elasticmapreduce/samples/wordcount/input',
 | 
						|
        '-output',
 | 
						|
        's3n://output_bucket/output/wordcount_output',
 | 
						|
    ])
 | 
						|
 | 
						|
    job_step2 = job_flow.steps[1]
 | 
						|
    job_step2.name.should.equal('My wordcount example2')
 | 
						|
    job_step2.state.should.equal('PENDING')
 | 
						|
    args = [arg.value for arg in job_step2.args]
 | 
						|
    args.should.equal([
 | 
						|
        '-mapper',
 | 
						|
        's3n://elasticmapreduce/samples/wordcount/wordSplitter2.py',
 | 
						|
        '-reducer',
 | 
						|
        'aggregate',
 | 
						|
        '-input',
 | 
						|
        's3n://elasticmapreduce/samples/wordcount/input2',
 | 
						|
        '-output',
 | 
						|
        's3n://output_bucket/output/wordcount_output2',
 | 
						|
    ])
 | 
						|
 | 
						|
 | 
						|
@mock_emr
 | 
						|
def test_create_instance_groups():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
 | 
						|
    step1 = StreamingStep(
 | 
						|
        name='My wordcount example',
 | 
						|
        mapper='s3n://elasticmapreduce/samples/wordcount/wordSplitter.py',
 | 
						|
        reducer='aggregate',
 | 
						|
        input='s3n://elasticmapreduce/samples/wordcount/input',
 | 
						|
        output='s3n://output_bucket/output/wordcount_output'
 | 
						|
    )
 | 
						|
 | 
						|
    job_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[step1],
 | 
						|
    )
 | 
						|
 | 
						|
    instance_group = InstanceGroup(6, 'TASK', 'c1.medium', 'SPOT', 'spot-0.07', '0.07')
 | 
						|
    instance_group = conn.add_instance_groups(job_id, [instance_group])
 | 
						|
    instance_group_id = instance_group.instancegroupids
 | 
						|
    job_flow = conn.describe_jobflows()[0]
 | 
						|
    int(job_flow.instancecount).should.equal(6)
 | 
						|
    instance_group = job_flow.instancegroups[0]
 | 
						|
    instance_group.instancegroupid.should.equal(instance_group_id)
 | 
						|
    int(instance_group.instancerunningcount).should.equal(6)
 | 
						|
    instance_group.instancerole.should.equal('TASK')
 | 
						|
    instance_group.instancetype.should.equal('c1.medium')
 | 
						|
    instance_group.market.should.equal('SPOT')
 | 
						|
    instance_group.name.should.equal('spot-0.07')
 | 
						|
    instance_group.bidprice.should.equal('0.07')
 | 
						|
 | 
						|
 | 
						|
@mock_emr
 | 
						|
def test_modify_instance_groups():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
 | 
						|
    step1 = StreamingStep(
 | 
						|
        name='My wordcount example',
 | 
						|
        mapper='s3n://elasticmapreduce/samples/wordcount/wordSplitter.py',
 | 
						|
        reducer='aggregate',
 | 
						|
        input='s3n://elasticmapreduce/samples/wordcount/input',
 | 
						|
        output='s3n://output_bucket/output/wordcount_output'
 | 
						|
    )
 | 
						|
 | 
						|
    job_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[step1]
 | 
						|
    )
 | 
						|
 | 
						|
    instance_group1 = InstanceGroup(6, 'TASK', 'c1.medium', 'SPOT', 'spot-0.07', '0.07')
 | 
						|
    instance_group2 = InstanceGroup(6, 'TASK', 'c1.medium', 'SPOT', 'spot-0.07', '0.07')
 | 
						|
    instance_group = conn.add_instance_groups(job_id, [instance_group1, instance_group2])
 | 
						|
    instance_group_ids = instance_group.instancegroupids.split(",")
 | 
						|
 | 
						|
    job_flow = conn.describe_jobflows()[0]
 | 
						|
    int(job_flow.instancecount).should.equal(12)
 | 
						|
    instance_group = job_flow.instancegroups[0]
 | 
						|
    int(instance_group.instancerunningcount).should.equal(6)
 | 
						|
 | 
						|
    conn.modify_instance_groups(instance_group_ids, [2, 3])
 | 
						|
 | 
						|
    job_flow = conn.describe_jobflows()[0]
 | 
						|
    int(job_flow.instancecount).should.equal(5)
 | 
						|
    instance_group1 = [
 | 
						|
        group for group
 | 
						|
        in job_flow.instancegroups
 | 
						|
        if group.instancegroupid == instance_group_ids[0]
 | 
						|
    ][0]
 | 
						|
    int(instance_group1.instancerunningcount).should.equal(2)
 | 
						|
    instance_group2 = [
 | 
						|
        group for group
 | 
						|
        in job_flow.instancegroups
 | 
						|
        if group.instancegroupid == instance_group_ids[1]
 | 
						|
    ][0]
 | 
						|
    int(instance_group2.instancerunningcount).should.equal(3)
 | 
						|
 | 
						|
 | 
						|
@requires_boto_gte("2.8")
 | 
						|
@mock_emr
 | 
						|
def test_set_visible_to_all_users():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
 | 
						|
    job_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[],
 | 
						|
        visible_to_all_users=False,
 | 
						|
    )
 | 
						|
    job_flow = conn.describe_jobflow(job_id)
 | 
						|
    job_flow.visibletoallusers.should.equal('False')
 | 
						|
 | 
						|
    conn.set_visible_to_all_users(job_id, True)
 | 
						|
 | 
						|
    job_flow = conn.describe_jobflow(job_id)
 | 
						|
    job_flow.visibletoallusers.should.equal('True')
 | 
						|
 | 
						|
    conn.set_visible_to_all_users(job_id, False)
 | 
						|
 | 
						|
    job_flow = conn.describe_jobflow(job_id)
 | 
						|
    job_flow.visibletoallusers.should.equal('False')
 | 
						|
 | 
						|
 | 
						|
@requires_boto_gte("2.8")
 | 
						|
@mock_emr
 | 
						|
def test_set_termination_protection():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
 | 
						|
    job_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[]
 | 
						|
    )
 | 
						|
    job_flow = conn.describe_jobflow(job_id)
 | 
						|
    job_flow.terminationprotected.should.equal(u'None')
 | 
						|
 | 
						|
    conn.set_termination_protection(job_id, True)
 | 
						|
 | 
						|
    job_flow = conn.describe_jobflow(job_id)
 | 
						|
    job_flow.terminationprotected.should.equal('true')
 | 
						|
 | 
						|
    conn.set_termination_protection(job_id, False)
 | 
						|
 | 
						|
    job_flow = conn.describe_jobflow(job_id)
 | 
						|
    job_flow.terminationprotected.should.equal('false')
 | 
						|
 | 
						|
 | 
						|
@mock_emr
 | 
						|
def test_list_clusters():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
    conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[],
 | 
						|
    )
 | 
						|
 | 
						|
    summary = conn.list_clusters()
 | 
						|
    clusters = summary.clusters
 | 
						|
    clusters.should.have.length_of(1)
 | 
						|
    cluster = clusters[0]
 | 
						|
    cluster.name.should.equal("My jobflow")
 | 
						|
    cluster.normalizedinstancehours.should.equal('0')
 | 
						|
    cluster.status.state.should.equal("RUNNING")
 | 
						|
 | 
						|
 | 
						|
@mock_emr
 | 
						|
def test_describe_cluster():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
    job_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[],
 | 
						|
    )
 | 
						|
 | 
						|
    cluster = conn.describe_cluster(job_id)
 | 
						|
    cluster.name.should.equal("My jobflow")
 | 
						|
    cluster.normalizedinstancehours.should.equal('0')
 | 
						|
    cluster.status.state.should.equal("RUNNING")
 | 
						|
 | 
						|
 | 
						|
@mock_emr
 | 
						|
def test_cluster_tagging():
 | 
						|
    conn = boto.connect_emr()
 | 
						|
    job_id = conn.run_jobflow(
 | 
						|
        name='My jobflow',
 | 
						|
        log_uri='s3://some_bucket/jobflow_logs',
 | 
						|
        steps=[],
 | 
						|
    )
 | 
						|
    cluster_id = job_id
 | 
						|
    conn.add_tags(cluster_id, {"tag1": "val1", "tag2": "val2"})
 | 
						|
 | 
						|
    cluster = conn.describe_cluster(cluster_id)
 | 
						|
    cluster.tags.should.have.length_of(2)
 | 
						|
    tags = dict((tag.key, tag.value) for tag in cluster.tags)
 | 
						|
    tags['tag1'].should.equal('val1')
 | 
						|
    tags['tag2'].should.equal('val2')
 | 
						|
 | 
						|
    # Remove a tag
 | 
						|
    conn.remove_tags(cluster_id, ["tag1"])
 | 
						|
    cluster = conn.describe_cluster(cluster_id)
 | 
						|
    cluster.tags.should.have.length_of(1)
 | 
						|
    tags = dict((tag.key, tag.value) for tag in cluster.tags)
 | 
						|
    tags['tag2'].should.equal('val2')
 |