Go to file
2013-04-30 08:33:53 -04:00
moto Revert "Switch to real version of httpretty. woot." 2013-04-30 08:33:53 -04:00
tests Merge pull request #25 from antimora/moto_23 2013-04-27 14:54:03 -07:00
.coveragerc fix keys to use types 2013-03-15 00:45:12 -04:00
.gitignore add boto to install requires 2013-02-25 23:56:41 -05:00
.travis.yml travis needs to output .coverage 2013-03-10 22:38:18 -04:00
AUTHORS.md add Authors file 2013-04-27 17:54:59 -04:00
LICENSE Add license. 2013-04-26 17:13:43 -04:00
Makefile fix makefile to work if .coverage doesnt exist 2013-03-15 11:21:03 -04:00
README.md remove note about which boto version was tested 2013-03-27 19:57:36 -04:00
requirements.txt switch to fork of python-coveralls 2013-03-10 23:39:28 -04:00
setup.py Revert "Switch to real version of httpretty. woot." 2013-04-30 08:33:53 -04:00

Moto - Mock Boto

Build Status Coverage Status

In a nutshell

Moto is a library that allows your python tests to easily mock out the boto library.

Imagine you have the following code that you want to test:

import boto
from boto.s3.key import Key

class MyModel(object):
    def __init__(self, name, value):
        self.name = name
        self.value = value

    def save(self):
        conn = boto.connect_s3()
        bucket = conn.get_bucket('mybucket')
        k = Key(bucket)
        k.key = self.name
        k.set_contents_from_string(self.value)

Take a minute to think how you would have tested that in the past.

Now see how you could test it with Moto:

import boto
from moto import mock_s3
from mymodule import MyModel

@mock_s3
def test_my_model_save():
    model_instance = MyModel('steve', 'is awesome')
    model_instance.save()

    conn = boto.connect_s3()
    assert conn.get_bucket('mybucket').get_key('steve') == 'is awesome'

With the decorator wrapping the test, all the calls to s3 are automatically mocked out. The mock keeps the state of the buckets and keys.

It gets even better! Moto isn't just S3. Here's the status of the other AWS services implemented.

|---------------------------------------------------------------------------|
| Service Name          | Decorator      | Development Status               |
|---------------------------------------------------------------------------|
| DynamoDB              | @mock_dynamodb | core endpoints done              |
|---------------------------------------------------------------------------|
| EC2                   | @mock_ec2      | core endpoints done              |
|     - AMI             |                | core endpoints done              |
|     - EBS             |                | core endpoints done              |
|     - Instances       |                | all  endpoints done              |
|     - Security Groups |                | core endpoints done              |
|     - Tags            |                | all  endpoints done              |
|---------------------------------------------------------------------------|
| S3                    | @mock_s3       | core endpoints done              |
|---------------------------------------------------------------------------|
| SES                   | @mock_ses      | core endpoints done              |
|---------------------------------------------------------------------------|
| SQS                   | @mock_sqs      | core endpoints done              |
|---------------------------------------------------------------------------|

Another Example

Imagine you have a function that you use to launch new ec2 instances:

import boto

def add_servers(ami_id, count):
    conn = boto.connect_ec2('the_key', 'the_secret')
    for index in range(count):
        conn.run_instances(ami_id)

To test it:

from . import add_servers

@mock_ec2
def test_add_servers():
    add_servers('ami-1234abcd', 2)

    conn = boto.connect_ec2('the_key', 'the_secret')
    reservations = conn.get_all_instances()
    assert len(reservations) == 2
    instance1 = reservations[0].instances[0]
    assert instance1.image_id == 'ami-1234abcd'

Usage

All of the services can be used as a decorator, context manager, or in a raw form.

Decorator

@mock_s3
def test_my_model_save():
    model_instance = MyModel('steve', 'is awesome')
    model_instance.save()

    conn = boto.connect_s3()
    assert conn.get_bucket('mybucket').get_key('steve') == 'is awesome'

Context Manager

def test_my_model_save():
    with mock_s3():
        model_instance = MyModel('steve', 'is awesome')
        model_instance.save()

        conn = boto.connect_s3()
        assert conn.get_bucket('mybucket').get_key('steve') == 'is awesome'

Raw use

def test_my_model_save():
    mock = mock_s3()
    mock.start()

    model_instance = MyModel('steve', 'is awesome')
    model_instance.save()

    conn = boto.connect_s3()
    assert conn.get_bucket('mybucket').get_key('steve') == 'is awesome'

    mock.stop()

Stand-alone Server Mode

Moto also comes with a stand-alone server mode. This allows you to utilize the backend structure of Moto even if you don't use Python.

To run a service:

$ moto_server ec2
 * Running on http://127.0.0.1:5000/

Then go to localhost to see a list of running instances (it will be empty since you haven't added any yet).

Install

$ pip install moto

Thanks

A huge thanks to Gabriel Falcão and his HTTPretty library. Moto would not exist without it.