{-# LANGUAGE MagicHash #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE RecursiveDo #-} module UIO where import System.Mem import System.Mem.Weak import Data.IORef import GHC.IORef import GHC.STRef import GHC.IO import GHC.Weak import GHC.Prim import Control.Monad.Primitive import Data.IntMap.Strict (IntMap) import qualified Data.IntMap.Strict as IntMap import Data.Set (Set) import qualified Data.Set as Set import System.IO.Unsafe import Control.Monad import Control.Concurrent import Data.Foldable import Data.These import Unsafe.Coerce import Control.Monad.Fix import Data.List.NonEmpty (NonEmpty (..)) import Data.Semigroup import GHC.Magic data RemainingWork = RemainingWork instance Semigroup RemainingWork where {-# INLINE (<>) #-} (<>) = seq sconcat = mconcat . toList stimes _ d = d instance Monoid RemainingWork where {-# INLINE mempty #-} mempty = RemainingWork mconcat = \case [] -> RemainingWork x : xs -> x `seq` mconcat xs -- Unordered IO - we want to allocate things, strictly evaluate things, etc., but we don't actually care what order it is done in newtype UIO2 a = UIO2 { unUIO2 :: State# RealWorld -> (RemainingWork, a) } instance Functor UIO2 where {-# INLINE fmap #-} fmap f x = x >>= (pure . f) instance Applicative UIO2 where {-# INLINE pure #-} {-# INLINE (*>) #-} {-# INLINE (<*>) #-} pure x = UIO2 (\s -> (RemainingWork, x)) UIO2 m *> UIO2 k = UIO2 (\s -> let (ms, _) = m (uniqueState 1# s) (ks, b) = k (uniqueState 2# s) in (ms <> ks, b)) UIO2 m <*> UIO2 k = UIO2 (\s -> let (ms, f) = m (uniqueState 1# s) (ks, x) = k (uniqueState 2# s) in (ms <> ks, f x)) instance Monad UIO2 where {-# INLINE (>>) #-} {-# INLINE (>>=) #-} (>>) = (*>) UIO2 m >>= k = UIO2 (\s -> let (ms, a) = m (uniqueState 1# s) (ks, b) = unUIO2 (k a) (uniqueState 2# s) in (ms <> ks, b)) instance MonadFix UIO2 where mfix k = UIO2 (\s -> let (ks, result) = unUIO2 (k result) s in (ks, result)) runUIO2 :: UIO2 a -> IO a runUIO2 (UIO2 m) = do -- We use a bang pattern here instead of "evaluate", because "evaluate" leaves a "seq#" clutting up our core, but the bang pattern does not (!RemainingWork, result) <- IO (\s -> (# s, m s #)) --TODO: This returns the same state we were given; should we call uniqueState 1 or something on it? pure result -- The following is marked NOINLINE because unsafeDupablePerformIO is marked NOINLINE. I don't really understand it. {-# INLINE unordered #-} unordered :: IO a -> UIO2 a unordered (IO m) = UIO2 (\s -> let x = case m s of (# _, x #) -> x in (x `seq` RemainingWork, x)) -- | Perform an action only when its result is needed. This action will be unique, but the computation will be considered finished regardless of whether this action has run. This is appropriate for functions like `newIORef`. {-# INLINE timeless #-} timeless :: IO a -> UIO2 a timeless (IO m) = UIO2 (\s -> (RemainingWork, case m s of (# _, x #) -> x)) -- Force GHC to treat each of these state tokens as unique. This way, multiple identical calls, e.g. to newIORef are not treated as identical, because they have different state tokens. Ideally, we would inline this after common sub-expression elimination finishes, so that it is costless. {-# NOINLINE uniqueState #-} uniqueState :: Int# -> State# RealWorld -> State# RealWorld uniqueState = uniqueState' {-# NOINLINE uniqueState' #-} uniqueState' :: Int# -> State# RealWorld -> State# RealWorld uniqueState' _ s = s -- This implementation seems to work sometimes, but I don't understand why, and it seems highly dependent on other aspects of the implementation. -- uniqueState = runRW# (\s _ _ -> s)