weak-refs/src/UIO.hs

92 lines
2.8 KiB
Haskell

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE UnboxedTuples #-}
module UIO
( module UIO
, module X
) where
import Control.Monad.Fix
import Data.Foldable
import Data.Semigroup
import GHC.IO
import GHC.Prim
import GHC.Magic
import UIO.Plugin as X
data RemainingWork = RemainingWork
instance Semigroup RemainingWork where
{-# INLINE (<>) #-}
(<>) = seq
sconcat = mconcat . toList
stimes _ d = d
instance Monoid RemainingWork where
{-# INLINE mempty #-}
mempty = RemainingWork
mconcat = \case
[] -> RemainingWork
x : xs -> x `seq` mconcat xs
-- Unordered IO - we want to allocate things, strictly evaluate things, etc., but we don't actually care what order it is done in
newtype UIO a = UIO { unUIO :: State# RealWorld -> (RemainingWork, a) }
instance Functor UIO where
{-# INLINE fmap #-}
fmap f x = x >>= (pure . f)
instance Applicative UIO where
{-# INLINE pure #-}
{-# INLINE (*>) #-}
{-# INLINE (<*>) #-}
pure x = UIO (\_ -> (RemainingWork, x))
UIO m *> UIO k = UIO (\s ->
let (ms, _) = m (uniqueState# 1# s)
(ks, b) = k (uniqueState# 2# s)
in (ms <> ks, b))
UIO m <*> UIO k = UIO (\s ->
let (ms, f) = m (uniqueState# 1# s)
(ks, x) = k (uniqueState# 2# s)
in (ms <> ks, f x))
instance Monad UIO where
{-# INLINE (>>) #-}
{-# INLINE (>>=) #-}
(>>) = (*>)
UIO m >>= k = UIO (\s ->
let (ms, a) = m (uniqueState# 1# s)
(ks, b) = unUIO (k a) (uniqueState# 2# s)
in (ms <> ks, b))
instance MonadFix UIO where
{-# INLINE mfix #-}
mfix k = UIO (\s ->
let (ks, result) = unUIO (k result) s
in (ks, result))
runUIO :: UIO a -> IO a
runUIO (UIO m) = do
-- We use a bang pattern here instead of "evaluate", because "evaluate" leaves a "seq#" clutting up our core, but the bang pattern does not
(!RemainingWork, result) <- IO (\s -> (# s, m s #)) --TODO: This returns the same state we were given; should we call uniqueState# 1# or something on it?
pure result
-- The following is marked NOINLINE because unsafeDupablePerformIO is marked NOINLINE. I don't really understand it.
{-# INLINE unordered #-}
unordered :: IO a -> UIO a
unordered (IO m) = UIO (\s -> let x = case m s of (# _, x #) -> x in (x `seq` RemainingWork, x))
-- | Perform an action only when its result is needed. This action will be unique, but the computation will be considered finished regardless of whether this action has run. This is appropriate for functions like `newIORef`.
{-# INLINE timeless #-}
timeless :: IO a -> UIO a
timeless (IO m) = UIO (\s -> (RemainingWork, case m s of (# _, x #) -> x))
{-# INLINE listen #-}
listen :: UIO a -> UIO (RemainingWork, a)
listen (UIO m) = UIO (\s -> let (done, a) = m s in (done, (done, a)))
{-# INLINE after #-}
after :: RemainingWork -> UIO a -> UIO a
after w (UIO m) = UIO (\s -> m (w `seq` s))